A Lot of Methods

Geometry Level 4

In triangle A B C ABC , A B = 13 AB=13 , B C = 14 BC=14 , and C A = 15 CA=15 . Distinct points D D , E E , and F F lie on segments B C \overline{BC} , C A \overline{CA} , and D E \overline{DE} , respectively, such that A D B C \overline{AD}\perp\overline{BC} , D E A C \overline{DE}\perp\overline{AC} , and A F B F \overline{AF}\perp\overline{BF} . The length of segment D F \overline{DF} can be written as m n \frac{m}{n} , where m m and n n are relatively prime positive integers. What is m + n m+n ?

27 21 24 30 18

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alan Yan
Oct 17, 2015

Since A F B = A D B \angle AFB = \angle ADB , this implies A F D B AFDB is cyclic which implies that A B F = A D E \angle ABF = \angle ADE which implies that A B F A D E \triangle ABF \equiv \angle ADE . This implies that A D A B = A E A F \frac{AD}{AB} = \frac{AE}{AF} which implies that F E = 4 D F = 16 5 FE = 4 \implies DF = \frac{16}{5} .

Can you please explain how you got the last line? Thanks.

Niranjan Khanderia - 5 years, 7 months ago

Can you please explain how you got all the lengths except AB which is given ? How it implies FE=4, and DF=16/5 ? Thank you.

Niranjan Khanderia - 5 years, 6 months ago

Δ A B C i s m a d e u p o f t w o r t . e d Δ s A D B a n d A D C , w h e r e A D = 5 , a n d D C = 9 , a n d A D = 12. S i n c e A B i s t h e h y p o t e n u s e o f t w o r t e d Δ s ADB and AFB, it is the diameter of a circle. O, the midpoint of AB is the center and radius = 13 2 . DE is the altitude of the 3-4-5 rt e Δ A D C . S o T a n E D C = 3 4 . Let A(0,12), B(- 5,0), D(0,0) be   on   x-y plain. 0 ( 5 2 , 6 ) . F = t h e c i r c l e D E . ( X + 5 2 ) 2 + ( Y 6 ) 2 = { 13 2 } 2 Y = 3 4 X . S o l v i n g , w e g e t F ( 0 , 0 ) 0 R F ( 64 25 , 48 25 ) . S i n c e D ( 0 , 0 ) , F ( 64 25 , 48 25 ) . D F = 16 5 = m n . S o m + n = 21 \Delta~ABC~ is ~ made ~ up ~ of ~ two ~ rt. ~ \angle ed ~ \Delta s~ ADB ~and ~ ADC,~ where~~AD=5, ~ and ~ DC=9, ~ and ~ AD=12.\\ Since ~ AB ~ is ~ the~ hypotenuse~ of ~ two~ rt~ \angle ed ~ \Delta s ~ \text{ADB and AFB, it is the diameter of a circle.}\\ \text{O, the midpoint of AB is the center and radius }=\dfrac{13} 2.\\ \text{DE is the altitude of the 3-4-5 rt } \angle e~ \Delta ~ ADC. ~ So ~ TanEDC = \dfrac 3 4 .\\ \text{Let A(0,12), B(- 5,0), D(0,0) be ~ on ~ x-y plain.}~\therefore~0(-\dfrac 5 2, 6).~~F = the~ circle\cap DE.\\ \implies~(X+\dfrac 5 2 )^2+(Y- 6)^2=\left \{\dfrac{13} 2 \right \}^2\cap Y=\dfrac 3 4 X. ~ Solving, ~ we ~ get ~ F(0,0) ~ 0R ~ F\left (\dfrac{64}{25}, \dfrac{48}{25}\right ).\\ Since D(0,0), ~ F\left (\dfrac{64}{25}, \dfrac{48}{25}\right ).~ \therefore DF=\dfrac{16}5=\dfrac m n.~~~So~~m+n=\large~~~~~~~~~~\color{#D61F06}{21}

AE =AD²/AC =144/15= 48/5. BDFA is concyclic then angle ABD= angle AFE and thus AD/BD =AE/FE or 12/5 = (48/5)/FE which gives FE =4. Moreover, 15(DE)=(12)(9) or DE =36/5 and therefore DF =36/5 - 4 = 16/5. Hence etc. (Incidentally, I pressed 27 by mistake but that's another matter)

Ajit Athle - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...