A geometry problem by Parth Sankhe

Geometry Level 2

In A B C \triangle ABC , A C = 5 AC=5 , A B = 4 AB=4 and cos ( B C ) = 31 32 \cos(B-C)=\dfrac {31}{32} . Find the length of B C BC .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 29, 2018

Let the side lengths opposite angles A A , B B and, C C be a a , b b , and c c respectively. Then A C = b = 5 AC = b = 5 , A B = c = 4 AB=c=4 and we need to find B C = a BC=a .

By cosine rule : a 2 = b 2 + c 2 2 b c cos A = 5 2 + 4 2 2 5 4 cos A = 41 40 cos A . . . ( 1 ) a^2 = b^2 + c^2 - 2bc \cos A = 5^2+4^2 - 2\cdot 5\cdot 4 \cos A = 41-40\cos A \quad ...(1)

By sine rule : sin A a = sin B 5 = sin C 4 . . . ( 2 ) \dfrac {\sin A}a = \dfrac {\sin B}5 = \dfrac {\sin C}4 \quad ...(2)

Consider the following identity:

cos ( B C ) cos ( B + C ) = 2 sin B sin C Given that cos ( B C ) = 31 32 31 32 + cos A = 2 5 4 sin B 5 sin C 4 Note that cos A = cos ( 18 0 B C ) = cos ( B + C ) 31 32 + cos A = 40 sin 2 A a 2 From ( 2 ) : sin A a = sin B 5 = sin C 4 31 32 + cos A = 40 1 cos 2 A 41 40 cos A From ( 1 ) : a 2 = 41 40 cos A 31 32 + cos A = 1 cos 2 A 41 40 cos A ( 31 32 + cos A ) ( 41 40 cos A ) = 1 cos 2 A 1271 1280 + 72 1280 cos A cos 2 A = 1 cos 2 A 72 1280 cos A = 1 1271 1280 cos A = 9 72 = 1 8 \begin{aligned} \color{#3D99F6}\cos (B-C) \color{#D61F06} - \cos (B+C) & = 2 \sin B \sin C & \small \color{#3D99F6} \text{Given that }\cos (B-C) = \frac {31}{32} \\ \color{#3D99F6}\frac {31}{32} \color{#D61F06}+ \cos A & = 2 \cdot 5 \cdot 4 \cdot \color{#20A900} \frac {\sin B}5 \cdot \frac {\sin C}4 & \small \color{#D61F06} \text{Note that }\cos A = \cos (180^\circ - B-C) = - \cos (B+C) \\ \frac {31}{32} + \cos A & = 40 \cdot \color{#20A900} \frac {\sin^2 A}{a^2} & \small \color{#20A900} \text{From }(2): \frac {\sin A}a = \frac {\sin B}5 = \frac {\sin C}4 \\ \frac {31}{32} + \cos A & = 40 \cdot \color{#20A900} \frac {1-\cos^2 A}{41-40\cos A} & \small \color{#20A900} \text{From }(1): a^2 = 41-40\cos A \\ \frac {31}{32} + \cos A & = \frac {1-\cos^2 A}{\frac {41}{40}-\cos A} \\ \left(\frac {31}{32} + \cos A\right) \left(\frac {41}{40}-\cos A \right) & = 1 - \cos^2 A \\ \frac {1271}{1280} + \frac {72}{1280}\cos A - \cos^2 A & = 1 - \cos^2 A \\ \frac {72}{1280}\cos A & = 1 - \frac {1271}{1280} \\ \cos A & = \frac 9{72} = \frac 18 \end{aligned}

From ( 1 ) : a 2 = 41 40 × 1 8 = 36 (1): \ a^2 = 41 - 40 \times \dfrac 18 = 36 , a = 6 \implies a = \boxed 6 .

Aaghaz Mahajan
Oct 29, 2018

Hint :- Use Napier's Analogies...............!!!!

@Brian Charlesworth @Brian Moehring @Chew-Seong Cheong Sir, was this the method used by you or some other approach???

Aaghaz Mahajan - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...