A marriage between geometry and algebra

Geometry Level 3

Let a , b a, b and c c be sides of a triangle Δ A B C \Delta ABC which has a circumradius of R . R. Determine the largest value of K K so that b + c sin A + a + c sin B + a + b sin C K R . \frac{b+c}{\sin A}+\frac{a+c}{\sin B}+\frac{a+b}{\sin C}\geq KR.


Note: The convention here is the side that is opposite of angle A A has length a . a.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

敬全 钟
May 28, 2018

Note that b + c sin A + a + c sin B + a + b sin C = ( a + b + c ) ( 1 sin A + 1 sin B + 1 sin C ) 6 R \frac{b+c}{\sin A}+\frac{a+c}{\sin B}+\frac{a+b}{\sin C}=(a+b+c)\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right)-6R from extended sine rule . Furthermore, by Cauchy-Schwarz inequality , we have ( a + b + c ) ( 1 sin A + 1 sin B + 1 sin C ) ( a sin A + b sin B + c sin C ) = ( 3 2 R ) 2 = 18 R . (a+b+c)\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right)\geq\left(\sqrt{\frac{a}{\sin A}}+\sqrt{\frac{b}{\sin B}}+\sqrt{\frac{c}{\sin C}}\right)=(3\sqrt{2R})^2=18R. Hence, K = 18 6 = 12. K=18-6=12. Equality holds when Δ A B C \Delta ABC is an equilateral triangle.

Nikhil N
May 29, 2018

From the sine rule: a s i n A = b s i n B = c s i n C = 2 R \frac{a}{sin{A}} = \frac{b}{sin{B}} = \frac{c}{sin{C}}\ = 2R

Thus, for an angle X and corresponding side x: s i n X = x 2 R sin{X} = \frac{x}{2R}

Using this in the LHS: b + c sin A + a + c sin B + a + b sin C = 2 R ( b + c a + c + a b + a + b c ) \frac{b+c}{\sin A}+\frac{a+c}{\sin B}+\frac{a+b}{\sin C} = 2R * (\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c})

From the AM-GM inequality (since a , b , c > 0 a,b,c > 0 ) : b + c a + c + a b + a + b c 6 1 \frac{\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}}{6} \geq 1 = > b + c a + c + a b + a + b c 6 => \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \geq 6 The equality holds when a = b = c a=b=c .

Thus, K = 12 K = 12 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...