A mathematical journey

Calculus Level 4

a n + 1 = 2 n a n { a }_{ n+1 }=2n{ a }_{ n } The recurrence relation above has the initial condition of a 1 = 1 a_1=1 . Suppose we define the function S ( x ) = n = 1 x n a n . S\left( x \right) =\sum _{ n=1 }^{ \infty }{ \frac { { x }^{ n } }{ { a }_{ n } } }. Find the value of 0 2 S ( x ) d x \displaystyle \int _{ 0 }^{ 2 }{ S\left( x \right) \, dx } .


This problem is original.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 25, 2015

It is given that:

a n + 1 = 2 n a n a n = 2 ( n 1 ) a n 1 = 2 2 ( n 1 ) ( n 2 ) a n 2 = 2 3 ( n 1 ) ( n 2 ) ( n 3 ) a n 3 . . . . . . . . . = 2 n 1 ( n 1 ) ( n 2 ) ( n 3 ) . . . . ( 3 ) ( 2 ) ( 1 ) a 1 Since a 1 = 1 a n = 2 n 1 ( n 1 ) ! \begin{aligned} a_{n+1} & = 2na_n \\ \Rightarrow a_n & = 2(n-1)a_{n-1} \\ & = 2^2(n-1)(n-2) a_{n-2} \\ & = 2^3(n-1)(n-2)(n-3) a_{n-3} \\ & ... \quad ... \quad ... \\ & = 2^{n-1}(n-1)(n-2)(n-3)....(3)(2)(1) a_1 \quad \quad \color{#3D99F6}{\text{Since }a_1 = 1} \\ \Rightarrow a_n & = 2^{n-1}(n-1)! \end{aligned}

Therefore,

S ( x ) = n = 1 x n a n = n = 1 x n 2 n 1 ( n 1 ) ! = x n = 1 x n 1 2 n 1 ( n 1 ) ! = x n = 0 ( x 2 ) n n ! = x e x 2 \begin{aligned} S(x) & = \sum_{n=1}^\infty \frac{x^n}{a_n} = \sum_{n=1}^\infty \frac{x^n}{2^{n-1}(n-1)!} = x \sum_{n=1}^\infty \frac{x^{n-1}}{2^{n-1}(n-1)!} = x \sum_{n=0}^\infty \frac{\left(\frac{x}{2}\right)^n}{n!} = xe^{\frac{x}{2}} \end{aligned}

0 2 S ( x ) d x = 0 2 x e x 2 d x By integration by parts = [ x 2 e x 2 ] 0 2 0 2 2 e x 2 d x = 4 e [ 4 e x 2 ] 0 2 = 4 e 4 e + 4 = 4 \begin{aligned} \Rightarrow \int_0^2 S(x) \space dx & = \int_0^2 xe^{\frac{x}{2}} \space dx \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \color{#3D99F6}{\text{By integration by parts}} \\ & = \left[x^2e^{\frac{x}{2}} \right]_0^2 - \int_0^2 2e^{\frac{x}{2}} \space dx \\ & = 4e - \left[4e^{\frac{x}{2}} \right]_0^2 = 4e - 4e + 4 = \boxed{4} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...