A Matrix problem by hobart pao

Algebra Level 4

If A = ( 2 6 6 2 2 7 3 6 1 5 0 1 3 7 0 7 ) A=\begin{pmatrix} 2 & 6 & 6 & 2 \\ 2 & 7 & 3 & 6 \\ 1 & 5 & 0 & 1 \\ 3 & 7 & 0 & 7 \end{pmatrix} , what is the determinant of A 1 A^{-1} ? Express the answer in the form a b -\dfrac{a}{b} in lowest terms, and find the sum a + b a+b .


The answer is 169.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A 1 = 1 A ( p r o p e r t y o f d e t e r m i n a n t i f A i s n o n s i n g u l a r . ) A = 2 6 6 2 2 7 3 6 1 5 0 1 3 7 0 7 R 1 R 1 2 R 2 A = 2 8 0 10 2 7 3 6 1 5 0 1 3 7 0 7 E x p a n d i n g u s i n g 3 r d C o l u m n A = 3. 2 8 10 1 5 1 3 7 7 C 2 C 2 C 3 A = 3. 2 2 10 1 4 1 3 0 7 C 3 C 3 C 1 A = 3. 2 2 8 1 4 0 3 0 4 R 1 R 1 2 R 3 A = 3. 4 2 0 1 4 0 3 0 4 e x p a n d i n g u s i n g 3 r d c o l u m n A = 3.4. 4 2 1 4 A = 12. ( 16 2 ) = 12.14 = 168 A 1 = 1 A = 1 168 = a b a + b = 169 |{ A }^{ -1 }|=\frac { 1 }{ |A| } \quad \quad \quad \qquad \qquad (property\quad of\quad determinant\quad if\quad A\quad is\quad non\quad singular.)\\ |A|=\left| \begin{matrix} 2 & 6 & 6 & 2 \\ 2 & 7 & 3 & 6 \\ 1 & 5 & 0 & 1 \\ 3 & 7 & 0 & 7 \end{matrix} \right| \\ { R }_{ 1 }\rightarrow { R }_{ 1 }-2{ R }_{ 2 }\\ |A|=\left| \begin{matrix} -2 & -8 & 0 & -10 \\ 2 & 7 & 3 & 6 \\ 1 & 5 & 0 & 1 \\ 3 & 7 & 0 & 7 \end{matrix} \right| \\ Expanding\quad using\quad 3rd\quad Column\\ \left| A \right| =-3.\left| \begin{matrix} -2 & -8 & -10 \\ 1 & 5 & 1 \\ 3 & 7 & 7 \end{matrix} \right| \\ { C }_{ 2 }\rightarrow { C }_{ 2 }-{ C }_{ 3 }\\ \left| A \right| =-3.\left| \begin{matrix} -2 & 2 & -10 \\ 1 & 4 & 1 \\ 3 & 0 & 7 \end{matrix} \right| \\ { C }_{ 3 }\rightarrow { C }_{ 3 }-{ C }_{ 1 }\\ \left| A \right| =-3.\left| \begin{matrix} -2 & 2 & -8 \\ 1 & 4 & 0 \\ 3 & 0 & 4 \end{matrix} \right| \\ { R }_{ 1 }\rightarrow { R }_{ 1 }-2{ R }_{ 3 }\\ \left| A \right| =-3.\left| \begin{matrix} 4 & 2 & 0 \\ 1 & 4 & 0 \\ 3 & 0 & 4 \end{matrix} \right| \\ expanding\quad using\quad 3rd\quad column\\ |A|=-3.4.\left| \begin{matrix} 4 & 2 \\ 1 & 4 \end{matrix} \right| \\ |A|=-12.(16-2)=-12.14=-168\\ |{ A }^{ -1 }|=\frac { 1 }{ |A| } =-\frac { 1 }{ 168 } =-\frac { a }{ b } \\ a+b=\quad 169

Moderator note:

Good approach simplifying the determinant calculation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...