A mere word will reveal the solution

Calculus Level 3

121 π / 6 61 π / 3 ( cos x + sin x ) d x \large \displaystyle \int_{{121 \pi} / {6}}^{{61 \pi} / {3}} (\cos x + \sin x) \, dx

If the integral above can be expressed as a 1 + b \displaystyle \frac{a}{1+\sqrt{b}} , what is the value of a + b a+b ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

121 π 6 61 π 3 ( c o s ( x ) + s i n ( x ) ) d x 20 π + π 6 20 π + π 3 ( c o s ( x ) + s i n ( x ) ) d x π 6 π 3 c o s ( x ) d x + π 6 π 3 s i n ( x ) d x I n t e g r a t i n g a n d r e a r r a n g i n g t h e t e r m s , s i n ( π 3 ) s i n ( π 6 ) c o s ( π 3 ) + c o s ( π 6 ) 3 2 1 2 1 2 + 3 2 3 1 N o w , w e n e e d t o b r i n g i t i n t e r m s o f a 1 + b M u l t i p l y i n g a n d d i v i d i n g 3 + 1 , ( 3 1 ) ( 3 + 1 ) ( 3 + 1 ) 2 ( 1 + 3 ) C o m p a r i n g , a = 2 , b = 3. S o , a + b = 5 \int _{ \frac { 121\pi }{ 6 } }^{ \frac { 61\pi }{ 3 } }{ (cos{ (x) }+sin({ x) })dx } \\ \int _{ 20\pi +\frac { \pi }{ 6 } }^{ 20\pi +\frac { \pi }{ 3 } }{ (cos(x)+sin(x))dx } \\ \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ cos(x) } dx+\int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 3 } }{ sin(x)dx } \\ Integrating\quad and\quad rearranging\quad the\quad terms,\\ sin(\frac { \pi }{ 3 } )-sin(\frac { \pi }{ 6 } )-cos(\frac { \pi }{ 3 } )+cos(\frac { \pi }{ 6 } )\\ \frac { \sqrt { 3 } }{ 2 } -\frac { 1 }{ 2 } -\frac { 1 }{ 2 } +\frac { \sqrt { 3 } }{ 2 } \\ \sqrt { 3 } -1\\ Now,\quad we\quad need\quad to\quad bring\quad it\quad in\quad terms\quad of\quad \frac { a }{ 1+\sqrt { b } } \\ Multiplying\quad and\quad dividing\quad \sqrt { 3 } +1,\\ \frac { (\sqrt { 3 } -1)(\sqrt { 3 } +1) }{ (\sqrt { 3 } +1) } \\ \frac { 2 }{ (1+\sqrt { 3 } ) } \\ Comparing,\quad a=2,\quad b=3.\\ So,\quad a+b=5

CHEERS!!:)

i did the same way

Saurabh Yadav - 6 years, 8 months ago
Abhishek Singh
Oct 3, 2014

We know that cos x + sin x \displaystyle \cos x + \sin x is a periodic function with a period of 2 π \displaystyle 2\pi hence the above integral can be written as
= 20 π + π 6 20 π + π 3 ( cos x + sin x ) d x \displaystyle = \int_{20 \pi + \frac{\pi}{6}}^{ 20 \pi + \frac{ \pi}{3}} (\cos x + \sin x) dx = π 6 π 3 ( cos x + sin x ) d x \displaystyle = \int_{\frac{\pi}{6}}^{\frac{ \pi}{3}} (\cos x + \sin x) dx After solving this we get 2 1 + 3 \displaystyle \frac{2}{1+ \sqrt{3}} so 2 + 3 = 5 \displaystyle 2+3=\boxed{5}

I solved this but what was that word you were talking about? @Abhishek

Pranjal Jain - 6 years, 7 months ago

Log in to reply

Exactly ! @Abhishek Singh

Keshav Tiwari - 6 years, 6 months ago

Was it (the "mere" word) 'Periodic' ?

Aakarshit Uppal - 6 years, 4 months ago
Curtis Clement
Feb 14, 2015

Firstly note that in trigonometry 61 π 3 π 3 a n d 121 π 6 π 6 \frac{61\pi}{3}\equiv\frac{\pi}{3} \ and \ \frac{121\pi}{6}\equiv\frac{\pi}{6} This yields π 6 π 3 ( c o s x + s i n x ) d x = [ c o s x s i n x ] 1 6 π 1 3 π \displaystyle\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (cosx + sinx)dx = [cosx - sinx]_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} = c o s 1 3 π + s i n 1 3 π c o s 1 6 π + s i n 1 6 π =|cos \frac{1}{3} \pi + sin \frac{1}{3} \pi| - |cos\frac{1}{6}\pi + sin\frac{1}{6}\pi| = 1 2 3 2 3 2 1 2 = 3 1 = 2 1 + 3 = | \frac{1}{2} - \frac{\sqrt3}{2}| - |\frac{\sqrt{3}}{2} - \frac{1}{2}| = \sqrt{3} -1 = \frac{2}{1+\sqrt{3}} a + b = 5 \therefore\ a+b = \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...