A Mini Chain

Calculus Level 5

A = 0 π ln ( 1 2 e cos ( x ) + e 2 ) d x B = 0 A e cos ( t ) cos ( sin t ) d t \begin{aligned} A & =\int_0^{\pi}\ln\left(1-2e\cos\left(x\right)+e^2\right)dx \\ B & =\int_0^Ae^{\cos\left(t\right)}\cos\left(\sin t\right)dt \end{aligned}

For A A and B B as defined above, find A B AB .


The answer is 39.478.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 1, 2019

We have A = 0 π ln ( 1 2 e cos x + e 2 ) d x = 0 π ln e e i x 2 d x = 2 0 π ln e e i x d x = 0 2 π ln e e i x d x = R e ( 0 2 π log ( e e i x ) d x ) = R e ( z = 1 log ( e z ) d z i z ) = R e ( 2 π R e s z = 0 log ( e z ) z ) = 2 π \begin{aligned} A & = \; \int_0^\pi \ln(1 - 2e\cos x + e^2)\,dx \; = \; \int_0^\pi \ln|e-e^{ix}|^2\,dx \; = \; 2\int_0^\pi \ln|e - e^{ix}|\,dx \; = \; \int_0^{2\pi}\ln|e-e^{ix}|\,dx \\ & = \; \mathfrak{Re}\left(\int_0^{2\pi} \log(e - e^{ix})\,dx\right) \; = \; \mathfrak{Re}\left(\int_{|z|=1} \log(e-z)\frac{dz}{iz}\right) \; = \; \mathfrak{Re}\left(2\pi\mathrm{Res}_{z=0}\frac{\log(e-z)}{z}\right) \; = \; 2\pi \end{aligned} and hence B = 0 2 π e cos t cos ( sin t ) d t = R e ( 0 2 π e cos t + i sin t d t ) = R e ( z = 1 e z d z i z ) = R e ( 2 π R e s z = 0 e z z ) = 2 π \begin{aligned} B & = \; \int_0^{2\pi}e^{\cos t} \cos(\sin t)\,dt \; = \; \mathfrak{Re}\left(\int_0^{2\pi}e^{\cos t + i \sin t}\,dt\right) \; = \; \mathfrak{Re}\left(\int_{|z|=1} e^z \frac{dz}{iz}\right) \\ & = \; \mathfrak{Re}\left(2\pi\mathrm{Res}_{z=0}\frac{e^z}{z}\right) \; = \; 2\pi \end{aligned} so that A B = 4 π 2 AB = \boxed{4\pi^2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...