n → ∞ lim n ⎣ ⎢ ⎢ ⎡ n 2 − n + 1 tan − 1 n − 1 + n 2 − 2 n + 4 tan − 1 2 n − 2 + n 2 − 3 n + 9 tan − 1 3 n − 3 + … + n 2 − n + 1 tan − 1 n − 1 1 ⎦ ⎥ ⎥ ⎤
If the limit above equals to b c π a where c is square free, find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
did the same... good solution neat and clean.......!!!!!
Problem Loading...
Note Loading...
Set Loading...
Let our limit be S , we have:
S = n → ∞ lim n m = 1 ∑ n − 1 n 2 − m n + m 2 tan − 1 m n − m
Not that if we replace m by n − m , the limits of the sum will be reversed, but the interval of values of m will remain the same ( [ 1 , n − 1 ] ). So we have:
S = n → ∞ lim n m = 1 ∑ n − 1 n 2 − ( n − m ) n + ( n − m ) 2 tan − 1 ( n − m ) n − ( n − m )
= n → ∞ lim n m = 1 ∑ n − 1 n 2 − m n + m 2 tan − 1 n − m m
= n → ∞ lim n m = 1 ∑ n − 1 n 2 − m n + m 2 cot − 1 m n − m
Then:
2 S = n → ∞ lim n m = 1 ∑ n − 1 n 2 − m n + m 2 tan − 1 m n − m + cot − 1 m n − m
2 S = n → ∞ lim n m = 1 ∑ n − 1 n 2 − m n + m 2 2 π
= > S = 4 π n → ∞ lim n m = 1 ∑ n − 1 n 2 ( 1 − n m + ( n m ) 2 ) 1
= 4 π n → ∞ lim n 1 m = 1 ∑ n − 1 1 − n m + ( n m ) 2 1
Notice that our limit now can be transformed into the Riemann Integral:
= 4 π ∫ 0 1 1 − x + x 2 1 d x
This integral can be easily computed using substitution , to yield the value of 3 3 2 π .
Therefore: S = 6 3 π 2 .