A Minute Limit

Calculus Level 5

lim n n [ tan 1 n 1 n 2 n + 1 + tan 1 n 2 2 n 2 2 n + 4 + tan 1 n 3 3 n 2 3 n + 9 + + tan 1 1 n 1 n 2 n + 1 ] \lim_{ n \to \infty} n \left[ \dfrac{\tan^{-1} \sqrt{n -1}}{n^{2} - n + 1} + \dfrac{\tan^{-1} \sqrt{\dfrac{n-2}{2}}}{n^{2} - 2n + 4} + \dfrac{\tan^{-1} \sqrt{\dfrac{n-3}{3}}}{n^{2} - 3n + 9} + \ldots+ \dfrac{\tan^{-1} \sqrt{\dfrac{1}{n-1}}}{n^{2} - n + 1} \right]

If the limit above equals to π a b c \dfrac{\pi^{a}}{b\sqrt{c}} where c c is square free, find a + b + c a + b + c .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasan Kassim
Jan 1, 2015

Let our limit be S S , we have:

S = lim n n m = 1 n 1 tan 1 n m m n 2 m n + m 2 \displaystyle S=\lim_{n\to \infty} n\sum_{m=1}^{n-1} \frac{\tan^{-1} \sqrt{\frac{n-m}{m}}}{n^2-mn+m^2}

Not that if we replace m m by n m n-m , the limits of the sum will be reversed, but the interval of values of m m will remain the same ( [ 1 , n 1 ] [1,n-1] ). So we have:

S = lim n n m = 1 n 1 tan 1 n ( n m ) ( n m ) n 2 ( n m ) n + ( n m ) 2 \displaystyle S= \lim_{n\to \infty} n\sum_{m=1}^{n-1} \frac{\tan^{-1} \sqrt{\frac{n-(n-m)}{(n-m)}}}{n^2-(n-m)n+(n-m)^2}

= lim n n m = 1 n 1 tan 1 m n m n 2 m n + m 2 \displaystyle = \lim_{n\to \infty} n\sum_{m=1}^{n-1} \frac{\tan^{-1} \sqrt{\frac{m}{n-m}}}{n^2-mn+m^2}

= lim n n m = 1 n 1 cot 1 n m m n 2 m n + m 2 \displaystyle = \lim_{n\to \infty} n\sum_{m=1}^{n-1} \frac{\cot^{-1} \sqrt{\frac{n-m}{m}}}{n^2-mn+m^2}

Then:

2 S = lim n n m = 1 n 1 tan 1 n m m + cot 1 n m m n 2 m n + m 2 \displaystyle 2S = \lim_{n\to \infty} n\sum_{m=1}^{n-1} \frac{\tan^{-1} \sqrt{\frac{n-m}{m}} +\cot^{-1} \sqrt{\frac{n-m}{m}}}{n^2-mn+m^2}

2 S = lim n n m = 1 n 1 π 2 n 2 m n + m 2 \displaystyle 2S = \lim_{n\to \infty} n\sum_{m=1}^{n-1} \frac{\frac{\pi}{2}}{n^2-mn+m^2}

= > S = π 4 lim n n m = 1 n 1 1 n 2 ( 1 m n + ( m n ) 2 ) \displaystyle => S=\frac{\pi}{4} \lim_{n\to \infty} n\sum_{m=1}^{n-1} \frac{1}{n^2(1-\frac{m}{n}+(\frac{m}{n})^2)}

= π 4 lim n 1 n m = 1 n 1 1 1 m n + ( m n ) 2 \displaystyle = \frac{\pi}{4} \lim_{n\to \infty} \frac{1}{n} \sum_{m=1}^{n-1} \frac{1}{1-\frac{m}{n}+(\frac{m}{n})^2}

Notice that our limit now can be transformed into the Riemann Integral:

= π 4 0 1 1 1 x + x 2 d x \displaystyle = \frac{\pi}{4} \int_0^1 \frac{1}{1-x+x^2} dx

This integral can be easily computed using substitution , to yield the value of 2 π 3 3 \frac{2\pi}{3\sqrt{3}} .

Therefore: S = π 2 6 3 \boxed{S= \frac{\pi^2}{6\sqrt{3}}} .

did the same... good solution neat and clean.......!!!!!

rajat kharbanda - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...