Find the sum of the series
n = 2 ∑ ∞ ln ( 1 − n 2 1 )
Round the answer to two decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How did you get to that argument product?
Log in to reply
Well, sum of logs is the log of the products, isn't it? Then we have for each n the product term (n-1)(n+1)/(n)(n)
ln ( 1 − n 2 1 ) = ln ( n 2 n 2 − 1 ) = ln n 2 ( n + 1 ) ( n − 1 ) = ln [ ( n + 1 ) ( n − 1 ) ] − ln n 2
= ln ( n + 1 ) + ln ( n − 1 ) − 2 ln n = ln ( n − 1 ) − ln n − ln n + ln ( n + 1 )
= ln n n − 1 − [ ln n − ln ( n + 1 ) ] = ln n n − 1 − ln n + 1 n .
Let s k = ∑ n = 2 k ln ( 1 − n 2 1 ) = ∑ n = 2 k ( ln n n − 1 − ln n + 1 n ) for k ≥ 2 .
Then
s k = ( ln 2 1 − ln 3 2 ) + ( ln 3 2 − ln 4 3 ) + . . . + ( ln k k − 1 − ln k + 1 k ) = ln 2 1 − ln k + 1 k , so
∑ n = 2 ∞ ln ( 1 − n 2 1 ) = lim k → ∞ ( ln 2 1 − ln k + 1 k ) = ln 2 1 − ln 1 = ln 1 − ln 2 − ln 1 = − ln 2 .
n = 2 ∑ ∞ ln ( 1 − n 2 1 ) = n = 2 ∑ ∞ ln ( n ( n + 1 ) ⋅ n ( n − 1 ) ) = n = 2 ∑ ∞ ( ln ( n + 1 ) − ln ( n ) ) + n = 2 ∑ ∞ ( ln ( n − 1 ) − ln ( n ) ) = n → ∞ lim ( ln ( n + 1 ) − l n ( 2 ) ) + n → ∞ lim ( ln ( 1 ) − ln ( n ) ) = ln ( lim n → ∞ n n + 1 ) − ln ( 2 ) = ln ( 1 ) − ln ( 2 ) = − ln ( 2 )
Problem Loading...
Note Loading...
Set Loading...
L o g ( ( 2 1 2 3 ) ( 3 2 3 4 ) ( 4 3 4 5 ) . . . ) = L o g ( 2 1 )