A Nearly Impossible Integral

Calculus Level 5

0 tanh ( π x ) ( 1 x x 1 16 + x 2 ) d x \displaystyle\int_{0}^{\infty} \tanh(\pi x)\left (\frac{1}{x}-\frac{x}{\frac{1}{16}+x^2}\right) \, dx can be written in the form π a b ln ( c ) \frac{\pi^a}{b}-\ln(c) where a a and b b are positive integers.

What is the value of a + b + c a+b+c ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 24, 2020

First note that j = 1 J 1 ( 2 j 1 ) ( 4 j 1 ) ( 4 j 3 ) = j = 1 J ( 1 4 j 1 + 1 4 j 3 1 2 j 1 ) = j = 1 2 J 1 2 j 1 j = 1 J 1 2 j 1 = j = 1 4 J 1 j j = 1 2 J 1 2 j j = 1 2 J 1 j + j = 1 J 1 2 j = ( S 4 J + ln ( 4 J ) ) 3 2 ( S 2 J + ln ( 2 J ) ) + 1 2 ( S J + ln J ) = S 4 J 3 2 S 2 J + 1 2 S J + 1 2 ln 2 \begin{aligned} \sum_{j=1}^J \frac{1}{(2j-1)(4j-1)(4j-3)} & = \; \sum_{j=1}^J \left(\frac{1}{4j-1} + \frac{1}{4j-3} - \frac{1}{2j-1}\right) \; = \; \sum_{j=1}^{2J}\frac{1}{2j-1} - \sum_{j=1}^J \frac{1}{2j-1} \\ & = \; \sum_{j=1}^{4J} \frac{1}{j} - \sum_{j=1}^{2J} \frac{1}{2j} - \sum_{j=1}^{2J} \frac{1}{j} + \sum_{j=1}^J \frac{1}{2j} \\ & = \; \big(S_{4J} + \ln(4J)\big) - \tfrac32\big(S_{2J} + \ln(2J)\big) + \tfrac12\big(S_J + \ln J\big) \; = \; S_{4J} - \tfrac32S_{2J} + \tfrac12S_J + \tfrac12\ln2 \end{aligned} where S J = j = 1 J 1 j ln J S_J \; = \; \sum_{j=1}^J\frac{1}{j} - \ln J is well-known to converge to the Euler-Mascheroni constant γ \gamma . Thus we deduce that j = 1 1 ( 2 j 1 ) ( 4 j 1 ) ( 4 j 3 ) = 1 2 ln 2 \sum_{j=1}^\infty \frac{1}{(2j-1)(4j-1)(4j-3)} \; = \; \tfrac12\ln2 Consider the desired integral X = 0 tanh ( π x ) ( 1 x x 1 16 + x 2 ) d x = 0 tanh ( π x ) x ( 1 + 16 x 2 ) d x = 1 2 tanh ( π x ) x ( 1 + 16 x 2 ) d x X \; = \; \int_0^\infty \tanh(\pi x) \left(\frac{1}{x} - \frac{x}{\frac{1}{16} + x^2}\right)\,dx \; = \; \int_0^\infty \frac{\tanh(\pi x)}{x(1 + 16x^2)}\,dx \; = \; \tfrac12\int_{-\infty}^\infty \frac{\tanh(\pi x)}{x(1 + 16x^2)}\,dx The function tanh ( π z ) z ( 1 + 16 z 2 ) \frac{\tanh(\pi z)}{z(1 + 16z^2)} is meromorphic, with a removable singularity at z = 0 z=0 , and its simple poles in the upper half plane are at z = ( j 1 2 ) i z = (j-\tfrac12) i for all j N j \in \mathbb{N} .

If C N C_N is the square with vertices N + N i N+Ni , N + N i -N+Ni , N N i -N-Ni , N N i N-Ni , it is standard theory that tanh ( π z ) coth π |\tanh(\pi z)| \le \coth \pi for all z C N z \in C_N and all N N N \in \mathbb{N} . Thus, if R N R_N is the positively oriented rectangle with vertices N N , N + N i N+Ni , N + N i -N+Ni , N -N , then lim N R N tanh ( π z ) z ( 1 + 16 z 2 ) d z = 2 X \lim_{N \to \infty} \int_{R_N} \frac{\tanh(\pi z)}{z(1 + 16z^2)}\,dz \; = \; 2X On the other hand, residue calculus tells us that R N tanh ( π z ) z ( 1 + 16 z 2 ) d z = 2 π i { R e s z = 1 4 i + j = 1 N R e s z = ( j 1 2 ) i } tanh ( π z ) z ( 1 + 16 z 2 ) = 2 π i { 1 2 i + j = 1 N 1 π ( j 1 2 ) i [ 1 4 ( 2 j 1 ) 2 ] } = π j = 1 N 4 ( 2 j 1 ) ( 4 j 1 ) ( 4 j 3 ) \begin{aligned} \int_{R_N} \frac{\tanh(\pi z)}{z(1 + 16z^2)}\,dz & = \; 2\pi i\left\{ \mathrm{Res}_{z=\frac14i} + \sum_{j=1}^N \mathrm{Res}_{z=(j-\frac12)i}\right\} \frac{\tanh(\pi z)}{z(1 + 16z^2)} \; = \; 2\pi i\left\{ -\frac12i + \sum_{j=1}^N \frac{1}{\pi (j-\frac12)i[1 - 4(2j-1)^2]}\right\} \\ & = \; \pi - \sum_{j=1}^N \frac{4}{(2j-1)(4j-1)(4j-3)} \end{aligned} Letting N N \to \infty we deduce that X = 1 2 π ln 2 X \; = \; \tfrac12\pi - \ln 2 making the answer 1 + 2 + 2 = 5 1 + 2 + 2 = \boxed{5} .

Naren Bhandari
Jun 25, 2020

Note that the above integral can be expressed as n 0 2 ( 2 n + 1 ) ( 4 n + 3 ) = ψ 0 ( 3 4 ) ψ 0 ( 1 2 ) = π 2 ln 2 \sum_{n\geq 0}\frac{2}{(2n+1)(4n+3)} =\psi^0\left(\frac{3}{4}\right)-\psi^0\left(\frac{1}{2}\right)=\frac{\pi}{2}-\ln2 Further this integral can be generalized and it has close relation with this problem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...