A neat proof.

Algebra Level 2

You have two complex numbers z z and w w : { z = cis ( α ) w = cis ( β ) \begin{cases} z=\text{cis}( \alpha) \\ w= \text{cis}( \beta) \end{cases} where cis ( x ) = cos x + i sin x \text{cis}( x ) =\cos { x } +i\sin { x } and i = 1 i = \sqrt{-1} denotes the imaginary unit . Which trigonometric identities are parts of the product z w z w ?

A : cos ( α + β ) = cos α cos β sin α sin β B : sin ( α + β ) = cos α sin β + sin α cos β \begin{aligned} A & : \cos { \left( \alpha +\beta \right) } =\cos { \alpha } \cos { \beta } -\sin { \alpha } \sin { \beta } \\B & : \sin { \left( \alpha +\beta \right) } =\cos { \alpha } \sin { \beta } +\sin { \alpha } \cos { \beta } \end{aligned}

Both A A and B B . A A only. B B only. Neither A A , nor B B .

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 20, 2019

From Euler's formula e i θ = cos θ + i sin θ e^{i\theta} = \cos \theta + i\sin \theta , then z = e i α z=e^{i\alpha} and w = e i β w = e^{i\beta} and z w = e i α e i β = e i ( α + β ) = cos ( α + β ) + i sin ( α + β ) = A + i B zw = e^{i\alpha} e^{i\beta} = e^{i(\alpha+\beta)} = \cos (\alpha+\beta) + i\sin (\alpha+\beta) = A+iB .

Both A and B \boxed{\text{Both } A\text{ and } B} are parts of the product z w zw .

CodeCrafter 1
Nov 19, 2019

Thanks to Euler we know, that: e i x = c i s ( x ) = cos x + i sin x { e }^{ i\cdot x }=cis\left( x \right) =\cos { x } +i\cdot \sin { x } And therefore we get: z w = e i α e i β = e i ( α + β ) = cos ( α + β ) + i sin ( α + β ) z\cdot w={ e }^{ i\cdot \alpha }\cdot { e }^{ i\cdot \beta }={ e }^{ i\cdot \left( \alpha +\beta \right) }=\cos { \left( \alpha +\beta \right) } +i\cdot \sin { \left( \alpha +\beta \right) } But there is another way to calculate the product z w z\cdot w : σ = z w = c i s ( α ) c i s ( β ) = ( cos α + i sin α ) ( cos β + i sin β ) = [ cos α cos β sin α sin β ] + i [ cos α sin β sin α cos β ] \begin{aligned}\sigma =z\cdot w=cis\left( \alpha \right) \cdot cis\left( \beta \right) &=\left( \cos { \alpha } +i\cdot \sin { \alpha } \right) \cdot \left( \cos { \beta } +i\cdot \sin { \beta } \right) \\ &=\left[ \cos { \alpha } \cdot \cos { \beta } -\sin { \alpha } \cdot \sin { \beta } \right] +i\cdot \left[ \cos { \alpha } \cdot \sin { \beta } -\sin { \alpha } \cdot \cos { \beta } \right]\end{aligned} We know, that both products have to be the same. z w = σ z\cdot w = \sigma if and only if R e ( z w ) = R e ( σ ) Re\left( z\cdot w \right) =Re\left( \sigma \right) and I m ( z w ) = I m ( σ ) Im\left( z\cdot w \right) =Im\left( \sigma \right) . Hence we get: R e ( σ ) = cos ( α + β ) = cos α cos β sin α sin β = R e ( z w ) I m ( σ ) = sin ( α + β ) = cos α sin β sin α cos β = I m ( z w ) \begin{aligned}Re\left( \sigma \right) &=\boxed { \cos { \left( \alpha +\beta \right) } =\cos { \alpha } \cdot \cos { \beta } -\sin { \alpha } \cdot \sin { \beta } } =Re\left( z\cdot w \right) \\ Im\left( \sigma \right) &=\boxed { \sin { \left( \alpha +\beta \right) } =\cos { \alpha } \cdot \sin { \beta } -\sin { \alpha } \cdot \cos { \beta } } =Im\left( z\cdot w \right)\end{aligned}

We have z = e i α z=e^{iα} and w = e i β w=e^{iβ} . So z . w = ( cos α + i sin α ) . ( cos β + i sin β ) = e i ( α + β ) = cos ( α + β ) + i sin ( α + β ) z.w=(\cos {α}+i\sin {α}).(\cos {β}+i\sin {β})=e^{i(α+β)}=\cos {(α+β)}+i\sin {(α+β)} . Expanding the cosine and sine terms and comparing the two sides, we get both the identities.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...