A New Function

Geometry Level 3

Let A r c T r i g ( x ) = sin 1 1 x + cos 1 1 x + tan 1 x + csc 1 x + sec 1 x + cot 1 x . ArcTrig(x)=\sin^{-1}\frac{1}{x}+\cos^{-1}\frac{1}{x}+\tan^{-1}x+\csc^{-1}x+\sec^{-1}x+\cot^{-1}x. What is A r c T r i g ( 4 5 + 1 ) ArcTrig\left(\frac{4}{\sqrt{5}+1}\right) in degrees?


The answer is 270.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anish Puthuraya
Feb 16, 2014

Since all the angles are within the domains of the respective inverse trig functions, thus,

sin 1 1 x + cos 1 1 x = π 2 \displaystyle \sin^{-1}\frac{1}{x}+\cos^{-1}\frac{1}{x} = \frac{\pi}{2}

tan 1 x + cot 1 x = π 2 \displaystyle \tan^{-1}x+\cot^{-1}x = \frac{\pi}{2}

csc 1 x + sec 1 x = π 2 \displaystyle \csc^{-1}x+\sec^{-1}x = \frac{\pi}{2}

Thus,
A r c T r i g ( 4 5 + 1 ) = π 2 + π 2 + π 2 = 3 π 2 = 27 0 o \displaystyle ArcTrig(\frac{4}{\sqrt{5}+1}) = \frac{\pi}{2}+\frac{\pi}{2}+\frac{\pi}{2} = \frac{3\pi}{2} = \boxed{270^o}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...