A new inequality has emerged! - Part 3

Calculus Level pending

For all positive integer n n and n 2 n \geq 2 , is it always true that i = 2 n ln i i + 1 < n 2 4 \displaystyle \sum_{i=2}^{n} \dfrac{\ln i}{i+1} < \dfrac{n^2}{4} ?

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Apr 17, 2020

Let us use Induction to prove Σ i = 2 n l n ( i ) i + 1 < n 2 4 , n 2 \Sigma_{i=2}^{n} \frac{ln(i)}{i+1} < \frac{n^2}{4}, n \ge 2 :

CASE I ( n = 2 n=2 ): l n ( 2 ) 2 + 1 < 2 2 4 l n ( 2 ) 3 < 1 \frac{ln (2)}{2+1} < \frac{2^2}{4} \Rightarrow \frac{ln (2)}{3} < 1 (TRUE).

CASE ( n = k n = k ): Σ i = 2 k l n ( i ) i + 1 < k 2 4 \Sigma_{i=2}^{k} \frac{ln (i)}{i+1} < \frac{k^2}{4} (ASSUMED TRUE).

CASE III ( n = k + 1 n = k+1 ): l n ( k + 1 ) ( k + 1 ) + 1 + Σ i = 2 k l n ( i ) i + 1 < k 2 4 + l n ( k + 1 ) ( k + 1 ) + 1 \frac{ln(k+1)}{(k+1)+1} + \Sigma_{i=2}^{k} \frac{ln (i)}{i+1} < \frac{k^2}{4} + \frac{ln(k+1)}{(k+1)+1} ;

or Σ i = 2 k + 1 l n ( i ) i + 1 < [ k 2 4 + l n ( k + 1 ) ( k + 1 ) + 1 ] ( k + 1 ) 2 4 4 ( k + 1 ) 2 ; \Sigma_{i=2}^{k+1} \frac{ln(i)}{i+1} < [\frac{k^2}{4} + \frac{ln(k+1)}{(k+1)+1}] \cdot \frac{(k+1)^2}{4} \cdot \frac{4}{(k+1)^2};

or Σ i = 2 k + 1 l n ( i ) i + 1 < [ k 2 ( k + 1 ) 2 + 4 l n ( k + 1 ) ( k + 2 ) ( k + 1 ) 2 ] ( k + 1 ) 2 4 ; \Sigma_{i=2}^{k+1} \frac{ln(i)}{i+1} < [\frac{k^2}{(k+1)^2} + \frac{4ln(k+1)}{(k+2)(k+1)^2}] \cdot \frac{(k+1)^2}{4};

or Σ i = 2 k + 1 l n ( i ) i + 1 < [ 1 + 4 l n ( k + 1 ) k + 2 2 + 4 l n ( k + 1 ) k + 1 + 1 + 4 l n ( k + 1 ) ( k + 1 ) 2 ] ( k + 1 ) 2 4 \Sigma_{i=2}^{k+1} \frac{ln(i)}{i+1} < [1 + \frac{4ln(k+1)}{k+2} - \frac{2 + 4ln(k+1)}{k+1} + \frac{1+4ln(k+1)}{(k+1)^2}] \cdot \frac{(k+1)^2}{4} ;

or Σ i = 2 k + 1 l n ( i ) i + 1 < f ( k ) ( k + 1 ) 2 4 \Sigma_{i=2}^{k+1} \frac{ln(i)}{i+1} < f(k) \cdot \frac{(k+1)^2}{4} .

Since lim x f ( x ) 1 \lim_{x \rightarrow \infty} f(x) \rightarrow 1 AND f ( x ) > 0 f'(x) > 0 for all x 2 x \ge 2 (i.e. a strictly increasing function over this interval) , we conclude Σ i = 2 k + 1 l n ( i ) i + 1 < ( k + 1 ) 2 4 \Sigma_{i=2}^{k+1} \frac{ln(i)}{i+1} < \frac{(k+1)^2}{4} (TRUE).

Q . E . D . \mathbb{Q.} \mathbb{E.} \mathbb{D.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...