A New Year, A New Hard Problem! 3 of 5

Calculus Level 5

m = 1 n = 1 m 2 n 3 m ( n 3 m + m 3 n ) = ? \large \sum_{m=1}^\infty \sum_{n=1}^\infty \frac {m^2n}{3^m\left(n3^m + m3^n\right)} = \ ?

Express your answer as a decimal rounded to the nearest hundredth.


The answer is 0.28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Thanks to @Syamand Hasam for the solution. Giving more details here.

S = m = 1 n = 1 m 2 n 3 m ( n 3 m + m 3 n ) 2 S = m = 1 n = 1 m 2 n 3 m ( n 3 m + m 3 n ) + n = 1 m = 1 n 2 m 3 n ( m 3 n + n 3 m ) = m = 1 n = 1 ( m 2 n 3 m ( n 3 m + m 3 n ) + n 2 m 3 n ( m 3 n + n 3 m ) ) = m = 1 n = 1 ( 3 n m 2 n 3 m 3 n ( n 3 m + m 3 n ) + 3 m n 2 m 3 m 3 n ( n 3 m + m 3 n ) ) = m = 1 n = 1 3 n m 2 n + 3 m n 2 m 3 m + n ( n 3 m + m 3 n ) = m = 1 n = 1 m n ( n 3 m + m 3 n ) 3 m + n ( n 3 m + m 3 n ) = m = 1 n = 1 m n 3 m + n = ( n = 1 n 3 n ) 2 \begin{aligned} S & = \sum_{m=1}^\infty \sum_{n=1}^\infty \frac {m^2n}{3^m\left(n3^m + m3^n\right)} \\ 2S & = \sum_{m=1}^\infty \sum_{n=1}^\infty \frac {m^2n}{3^m\left(n3^m + m3^n\right)} + \sum_{n=1}^\infty \sum_{m=1}^\infty \frac {n^2m}{3^n\left(m3^n + n3^m\right)} \\ & = \sum_{m=1}^\infty \sum_{n=1}^\infty \left(\frac {m^2n}{3^m\left(n3^m + m3^n\right)} + \frac {n^2m}{3^n\left(m3^n + n3^m\right)} \right) \\ & = \sum_{m=1}^\infty \sum_{n=1}^\infty \left(\frac {3^nm^2n}{3^m3^n\left(n3^m + m3^n\right)} + \frac {3^mn^2m}{3^m3^n\left(n3^m + m3^n\right)} \right) \\ & = \sum_{m=1}^\infty \sum_{n=1}^\infty \frac {3^nm^2n +3^mn^2m }{3^{m+n}\left(n3^m + m3^n\right)} \\ & = \sum_{m=1}^\infty \sum_{n=1}^\infty \frac {mn\left(n3^m + m3^n\right)}{3^{m+n}\left(n3^m + m3^n\right)} \\ & = \sum_{m=1}^\infty \sum_{n=1}^\infty \frac {mn}{3^{m+n}} \\ & = \left(\sum_{n=1}^\infty \frac n{3^n}\right)^2 \end{aligned}

Now consider:

S 1 = n = 1 n 3 n = n = 0 n 3 n = n = 0 n + 1 3 n + 1 = 1 3 n = 0 n 3 n + 1 3 n = 0 1 3 n = 1 3 S 1 + 1 3 n = 0 1 3 n = 1 2 n = 0 1 3 n = 1 2 ( 1 1 1 3 ) = 3 4 \begin{aligned} S_1 & = \sum_{\color{#3D99F6}n=1}^\infty \frac n{3^n} = \sum_{\color{#D61F06}n=0}^\infty \frac n{3^n} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac {n+1}{3^{n+1}} \\ & = \frac 13 \sum_{n=0}^\infty \frac n{3^n} + \frac 13 \sum_{n=0}^\infty \frac 1{3^n} \\ & = \frac 13 S_1 + \frac 13 \sum_{n=0}^\infty \frac 1{3^n} \\ & = \frac 12 \sum_{n=0}^\infty \frac 1{3^n} \\ & = \frac 12 \left(\frac 1{1-\frac 13}\right) \\ & = \frac 34 \end{aligned}

Therefore, S = 1 2 ( 3 4 ) 2 = 9 32 0.28 S = \dfrac 12 \left(\dfrac 34\right)^2 = \dfrac 9{32} \approx \boxed{0.28} .

@Chew-Seong Cheong , sir i am not able to understand how you got the 4th step after 3rd step (from the beginning of your solution). Please explain in detail how you took the lcm.

Priyanshu Mishra - 3 years, 5 months ago

Log in to reply

I have added a step to explain. Hope it is useful.

Chew-Seong Cheong - 3 years, 5 months ago

This is Putnam 1999 A4.

Patrick Corn - 3 years, 5 months ago
Syamand Hasam
Jan 1, 2018

Let f ( m , n ) = m 2 n 3 m ( n 3 m + m 3 n ) \displaystyle f(m,n) = \frac{m^2n}{3^m(n3^m + m3^n)} , note that f ( m , n ) + f ( n , m ) = m n n 3 m + m 3 n ( m 3 m + n 3 n ) = m n 3 m 3 n \displaystyle f(m,n) + f(n,m) = \frac{mn}{n3^m + m3^n} \left(\frac{m}{3^m} + \frac{n}{3^n} \right) = \frac{mn}{3^m 3^n} . Now, letting S = m = 1 n = 1 f ( m , n ) = m = 1 n = 1 f ( n , m ) \displaystyle S = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(m,n) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(n,m) , by re-arrangement, which is allowed here because the summands are positive. Therefore, 2 S = m = 1 n = 1 ( f ( m , n ) + f ( n , m ) ) = m = 1 n = 1 m n 3 m 3 n = ( n = 1 n 3 n ) 2 \displaystyle 2S = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (f(m,n) + f(n,m)) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{mn}{3^m 3^n} = \left(\sum_{n=1}^{\infty}\frac{n}{3^n} \right)^2 . Now we can obtain the sum via differentiating the following identity, 1 + x + x 2 + = 1 1 x , ( x < 1 ) \displaystyle 1 + x + x^2 + \dots = \frac{1}{1-x}, \ (|x| < 1) , then multiplying by x x we obtain, x + 2 x 2 + 3 x 3 + = x ( 1 x ) 2 , ( x < 1 ) \displaystyle x + 2x^2 + 3x^3 + \dots = \frac{x}{(1-x)^2}, \ (|x| < 1) . Substitute x = 1 3 x = \frac{1}{3} , to obtain that, n = 1 n 3 n = 3 4 \displaystyle \sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{3}{4} . Therefore,

S = 9 32 S = \frac{9}{32}

Nice Job! Your explanation was nothing but phenomenal.

Vishruth Bharath - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...