A New Year Integral in Disguise

Calculus Level 3

0 1 ( x + 1 ) ( x 4 + 4 x 3 + 6 x 2 + 4 x + 1 ) 505 d x = 1 A \int _{ 0 }^{ \infty }{ \frac { 1 }{ \left( x+1 \right) { \left( { x }^{ 4 }+4{ x }^{ 3 }+6{ x }^{ 2 }+4x+1 \right) }^{ 505 } } }dx =\frac { 1 }{ A } Find the value of A A


The answer is 2020.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 28, 2019

I = 0 d x ( x + 1 ) ( x 4 + 4 x 3 + 6 x 2 + 4 x + 1 ) 505 = 0 d x ( x + 1 ) ( ( x + 1 ) 4 ) 505 = 0 d x ( x + 1 ) 2021 Let u = x + 1 d u = d x = 1 1 u 2021 d u = 1 2020 u 2020 1 = 1 2020 \begin{aligned} I & = \int_0^\infty \frac {dx}{(x+1)(x^4+4x^3+6x^2+4x+1)^{505}} \\ & = \int_0^\infty \frac {dx}{(x+1)\left((x+1)^4\right)^{505}} \\ & = \int_0^\infty \frac {dx}{(x+1)^{2021}} & \small \blue{\text{Let }u = x+1 \implies du = dx} \\ & = \int_1^\infty \frac 1{u^{2021}}\ du \\ & = - \frac 1{2020 u^{2020}} \bigg|_1^\infty \\ & = \frac 1{2020} \end{aligned}

Therefore A = 2020 A=\boxed{2020} .

Happy New Year \Large \red{\text{Happy New Year}}

Syed Shahabudeen
Dec 27, 2019

The 4th-degree polynomial is just an expansion of ( 1 + x ) 4 { \left( 1+{ x } \right) }^{ 4 } . So the following integral can be written as 0 1 ( x + 1 ) ( x + 1 ) 4 × 505 d x = 0 1 ( x + 1 ) 2021 d x \int _{ 0 }^{ \infty }{ \frac { 1 }{ \left( x+1 \right) { \left( { x }+1 \right) }^{ 4\times 505 } } dx } =\int _{ 0 }^{ \infty }{ \frac { 1 }{ { \left( { x }+1 \right) }^{ 2021 } } dx } On substituting x = tan 2 θ x={ \tan }^{ 2 }\theta ( x + 1 = t x+1=t is also a good substitution) we get 0 π 2 2 tan θ sec 2 θ ( 1 + tan 2 θ ) 2021 d θ \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { 2\tan\theta { \sec }^{ 2 }\theta }{ { \left( 1+{ \tan }^{ 2 }\theta \right) }^{ 2021 } } d\theta } On simplifying and by applying wallis formula we get 2 0 π 2 sin θ cos 4039 θ d θ = 2 ( 1 2 ( Γ ( 2020 ) Γ ( 1 ) Γ ( 2021 ) ) ) = 1 2020 2\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sin\theta { \cos }^{ 4039 }\theta d\theta } =2\left( \frac { 1 }{ 2 } \left( \frac { \Gamma \left( 2020 \right) \Gamma \left( 1 \right) }{ \Gamma \left( 2021 \right) } \right) \right) =\frac { 1 }{ 2020 } therefore A = 2020 \boxed{A=2020}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...