Compositional Square

Define a function f ( n ) = n + n \displaystyle f(n) = n + \left \lfloor \sqrt{n} \right \rfloor .

Find the smallest value of k k such that the composite function ,
f k ( 2017 ) = f f f f k times ( 2017 ) f^{k} (2017) = \underbrace{f\circ f \circ f \circ \cdots \circ f}_{k \text{ times}} (2017) can be expressed as m 2 m^2 for some positive integer m m .

Submit your answer as m k m-k .

Notation : \lfloor \cdot \rfloor denotes the floor function .


This problem is inspired from a Putnam problem.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kartik Sharma
Sep 21, 2016

Let n = k 2 + m , 2 k + 1 > m 0 \displaystyle n = k^2 + m, 2k+1 > m \geq 0

Now, we get our hands dirty.

f ( n ) = k 2 + m + k \displaystyle f(n) = k^2 + m + \color{#D61F06} k

f ( f ( n ) ) = { k 2 + m + 2 k if 0 m < k + 1 k 2 + m + 2 k + 1 if k + 1 m < 2 k + 1 \displaystyle f(f(n)) = \left\{ \begin{array}{lr} k^2 + m+\color{#D61F06}{2k} & \text{if } 0 \le m < k+1\\ k^2 + m+\color{#D61F06}{2k+1} & \text{if } k+1 \le m < 2k+1 \end{array} \right.

After this I am just writing, I am just writing the upper limits in the pieces the lower limits will change in a trivial manner because if they do then for that particular m m the square term would have already come.

f 3 ( n ) = { k 2 + m + 3 k + 1 if m < k + 1 k 2 + m + 3 k + 2 if m < 2 k + 1 \displaystyle f^3(n) = \left\{ \begin{array}{lr} k^2 + m+\color{#D61F06}{3k + 1} & \text{if } m < k+1\\ k^2 + m+\color{#D61F06}{3k + 2} & \text{if } m < 2k+1 \end{array} \right.

f 4 ( n ) = { k 2 + m + 4 k + 2 if m < k + 1 k 2 + m + 4 k + 4 if m < 2 k + 1 \displaystyle f^4(n) = \left\{ \begin{array}{lr} k^2 + m+\color{#D61F06}{4k + 2} & \text{if } m < k+1\\ k^2 + m+\color{#D61F06}{4k + 4} & \text{if } m < 2k+1 \end{array} \right.

f 5 ( n ) = { k 2 + m + 5 k + 4 if m < k + 1 k 2 + m + 5 k + 6 if m < 2 k + 1 \displaystyle f^5(n) = \left\{ \begin{array}{lr} k^2 + m+\color{#D61F06}{5k + 4} & \text{if } m < k+1\\ k^2 + m+\color{#D61F06}{5k + 6} & \text{if } m < 2k+1 \end{array} \right.

f 6 ( n ) = { k 2 + m + 6 k + 6 if m < k + 1 k 2 + m + 6 k + 9 if m < 2 k + 1 \displaystyle f^6(n) = \left\{ \begin{array}{lr} k^2 + m+\color{#D61F06}{6k + 6} & \text{if } m < k+1\\ k^2 + m+\color{#D61F06}{6k + 9} & \text{if } m < 2k+1 \end{array} \right.

It is not hard to see a pattern as -

We conjecture that

f 2 t 1 ( n ) = { k 2 + m + ( 2 t 1 ) k + ( t 1 ) 2 if m < k + 1 k 2 + m + ( 2 t 1 ) k + t ( t 1 ) if m < 2 k + 1 \displaystyle f^{2t-1}(n) = \left\{ \begin{array}{lr} k^2 + m+\color{#D61F06}{(2t-1)k + (t-1)^2} & \text{if } m < k+1\\ k^2 + m+\color{#D61F06}{(2t-1)k + t(t-1)} & \text{if } m < 2k+1 \end{array} \right.

f 2 t ( n ) = { k 2 + m + ( 2 t ) k + t ( t 1 ) if m < k + 1 k 2 + m + ( 2 t ) k + t 2 if m < 2 k + 1 \displaystyle f^{2t}(n) = \left\{ \begin{array}{lr} k^2 + m+\color{#D61F06}{(2t)k + t(t-1)} & \text{if } m < k+1\\ k^2 + m+\color{#D61F06}{(2t)k + t^2} & \text{if } m < 2k+1 \end{array} \right.

We need such that f 2 t ( n ) f^{2t}(n) or f 2 t 1 ( n ) f^{2t-1}(n) is a square number.

Let's check.

Case 1

k 2 + m + ( 2 t 1 ) k + ( t 1 ) 2 = ( k + t 1 ) 2 + k + m k^2 + m + (2t-1)k + (t-1)^2 = (k+t-1)^2 + k + m cannot be a square.

k 2 + m + ( 2 t 1 ) k + t 2 t = ( k + t ) 2 + m k t k^2 + m + (2t-1)k + t^2 - t = (k+t)^2 + m - k - t . So, for t = m k t = m-k , we will get a square number.

There will exist a square number k + 1 m < 2 k + 1 \displaystyle \forall k+1 \le m < 2k+1 at f 2 ( m k ) 1 ( n ) \displaystyle f^{2(m-k) - 1}(n) where n = k 2 + m n = k^2 + m

Case 2

k 2 + m + 2 t k + t ( t 1 ) = ( k + t ) 2 + m t k^2 + m + 2tk + t(t-1) = (k+t)^2 + m - t . So, for t = m t = m , we will get a square number

k 2 + m + 2 t k + t 2 k^2 + m + 2tk + t^2 cannot be a square in the given domain.

There will exist a square number 0 m < k + 1 \displaystyle \forall 0 \le m < k+1 at f 2 m ( n ) \displaystyle f^{2m}(n) where n = k 2 + m n = k^2 + m

We can now conclude this(I have not yet proved our conjecture and will also not do it).

Conclusion

If f ( n ) = n + n \displaystyle f(n) = n + \left \lfloor \sqrt{n} \right \rfloor . And n = k 2 + m ; 0 m < 2 k + 1 n = k^2 + m ; 0\leq m <2k+1 , then

the sequence f ( n ) , f 2 ( n ) , f 3 ( n ) , f(n), f^2(n), f^3(n),\cdots will always contain square of an integer.

In fact, the first such square will occur at, and its value will respectively be:

{ at f 2 m ( n ) = ( k + m ) 2 if 0 m < k + 1 at f 2 ( m k ) 1 ( n ) = m 2 if k + 1 m < 2 k + 1 \displaystyle \left\{ \begin{array}{lr} \text{at} f^{2m}(n) = (k+m)^2 & \text{if } 0 \leq m < k+1\\ \text{at} f^{2(m-k)-1}(n) = m^2 & \text{if } k+1 \geq m < 2k+1 \end{array} \right.

Let me tell you that this is not a complete solution. This is just the first step of problem solving. Observation, making conjectures and having fun.

Kartik Sharma - 4 years, 8 months ago

Log in to reply

Try this

Kartik Sharma - 4 years, 8 months ago

Log in to reply

I also did observation and after that pure number theory. Very good question. But the next part seems very tough at first look.

Kushagra Sahni - 4 years, 8 months ago

Welcome back ! Where were you?

Aditya Chauhan - 4 years, 8 months ago

@Kartik Sharma its good to see u back!

Kunal Gupta - 4 years, 8 months ago

What Putnam problem is this from?

Chaebum Sheen - 4 years, 8 months ago

2017+44,2061+45,2106+45, 2151+46,2197+46,... So 1973+2 (44+45+...+n)=m², 1973+2(n(n+1)/2-43 44/2)=m² n²+n+81=m², n=(-1+√(4m²-323))/2 4m²-323=x² (2m+x)(2m-x)=323 4m=323+1=324, m=81, n=80 k=1+2(80-44)=73 m-k=81-73=8

Nikola Djuric - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...