If there is only one solution to the equation a x 2 + b x + c = 0 , where a , b , c > 0 ; b = 2 ; a x = − 1 and x is the root of the equation, then what is the value of b − 2 3 − b 2 + 2 b + 4 3 b − 2 − b 3 − 8 b 2 + 1 6 b + 1 2 − 2 ( a x + 1 ) 1 ?
If this isn't a constant, then give the maximum value of the expression!
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If there is only one solution to a x 2 + b x + c = 0 , then the discriminant is 0 and x = − 2 a b , which means − 2 ( a x + 1 ) = − 2 ( a ( − 2 a b ) + 1 ) = b − 2 . Then:
b − 2 3 − b 2 + 2 b + 4 3 b − 2 − b 3 − 8 b 2 + 1 6 b + 1 2 − 2 ( a x + 1 ) 1
= b − 2 3 − b 2 + 2 b + 4 3 b − 2 − b 3 − 8 b 2 + 1 6 b + 1 2 + b − 2 1
= b − 2 4 − b 2 + 2 b + 4 3 b − 2 − b 3 − 8 b 2 + 1 6 b + 1 2
= ( b − 2 ) ( b 2 + 2 b + 4 ) 4 ( b 2 + 2 b + 4 ) − ( b − 2 ) ( b 2 + 2 b + 4 ) ( 3 b − 2 ) ( b − 2 ) − b 3 − 8 b 2 + 1 6 b + 1 2
= b 3 − 8 4 b 2 + 8 b + 1 6 − b 3 − 8 3 b 2 − 8 b + 4 − b 3 − 8 b 2 + 1 6 b + 1 2
= b 3 − 8 ( 4 b 2 + 8 b + 1 6 ) − ( 3 b 2 − 8 b + 4 ) − ( b 2 + 1 6 b + 1 2 )
= b 3 − 8 4 b 2 + 8 b + 1 6 − 3 b 2 + 8 b − 4 − b 2 − 1 6 b − 1 2
= b 3 − 8 4 b 2 − 3 b 2 − b 2 + 8 b + 8 b − 1 6 b + 1 6 − 4 − 1 2
= 0
Nice solution! I think you can explain this: − 2 ( a x + 1 ) = 2 ( a ( − 2 a b ) + 1 ) = b − 2 .
Log in to reply
It's substituting x = − 2 a b and then distributing
Log in to reply
You can get this from the discriminant: c = 4 a b , then you can sustitute: a x 2 + b x + 4 a b = 0 , then you multiply by 4a, after some modification: ( 2 a x + b ) ( 2 a x + b ) = 0 .
Since the equation has one root, b 2 = 4 a c
The given expression is
b − 2 3 − b 2 + 2 b + 4 3 b − 2 − b 3 − 8 b 2 + 1 6 b + 1 2 − 2 ( a x + 1 ) 1
= 2 ( b − 2 ) ( a x + 1 ) 2 a x + b
It's not mentioned that x is the root of the given equation, what all is told about it is that a x = − 1 . So, we have to find the maximum of the expression obtained. Since b = 2 , the only condition for the optimum of the expression is a = 0 . Since b 2 = 4 a c , therefore b = 0 , and the maximum of the expression is 0 .
Hmmm... x is the root of the equation.
I added to the task
Your expression is wrong
Log in to reply
Which expression, the simplified one? In the original one, there was a typo, which I have rectified.
Problem Loading...
Note Loading...
Set Loading...
The solution to the equation a x 2 + b x + c = 0 is x = 2 a − b ± b 2 − 4 a c . If there is only one solution, then b 2 − 4 a c = 0 and x = − 2 a b ⟹ 2 a x = − b . Now we have:
X = b − 2 3 − b 2 + 2 b + 4 3 b − 2 − b 2 − 8 b 2 + 1 6 x + 1 2 − 2 ( a x + 1 ) 1 = b − 2 3 − b 2 + 2 b + 4 3 b − 2 − b 2 − 8 b 2 + 1 6 x + 1 2 − − b + 2 1 = b − 2 4 − b 2 + 2 b + 4 3 b − 2 − b 2 − 8 b 2 + 1 6 x + 1 2 = ( b − 2 ) ( b 2 + 2 b + 4 ) 4 ( b 2 + 2 b + 4 ) − ( 3 b − 2 ) ( b − 2 ) − b 2 − 8 b 2 + 1 6 x + 1 2 = b 2 − 8 b 2 + 1 6 x + 1 2 − b 2 − 8 b 2 + 1 6 x + 1 2 = 0