A nice answer!

Geometry Level 3

Extend the red circles above to an infinite number of circles.

For each integer n 1 n \geq 1 , circle w n w_{n} is tangent to w n 1 w_{n - 1} and tangent to diameter A B \overline{AB} . of the semicircle.

Let S S be the sum of all the radii of the red circles and R R be the radius of the semicircle.

Find 2 S R \dfrac{2S}{R}

For a Similar Problem:


The answer is 1.61803398875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Mar 5, 2021

Let R = 1 R = 1 and label C C and D D as follows:

Then P D = D O = C D = 1 2 PD = DO = CD = \cfrac{1}{2} , and by the Pythagorean Theorem on A D O , A D = A O 2 + D O 2 = 1 2 + ( 1 2 ) 2 = 5 2 \triangle ADO, AD = \sqrt{AO^2 + DO^2} = \sqrt{1^2 + \bigg(\cfrac{1}{2}\bigg)^2} = \cfrac{\sqrt{5}}{2} .

Then A C = A D C D = 5 2 1 2 = 5 1 2 AC = AD - CD = \cfrac{\sqrt{5}}{2} - \cfrac{1}{2} = \cfrac{\sqrt{5} - 1}{2} .

The sum of the radii of all the red circles is S = 1 2 A C + C D = 1 2 5 1 2 + 1 2 = 5 + 1 4 S = \cfrac{1}{2} AC + CD = \cfrac{1}{2} \cdot \cfrac{\sqrt{5} - 1}{2} + \cfrac{1}{2} = \cfrac{\sqrt{5} + 1}{4} .

Therefore, 2 S R = 2 5 + 1 4 1 = 5 + 1 2 = ϕ 1.618 \cfrac{2S}{R} = \cfrac{2 \cdot \frac{\sqrt{5} + 1}{4}}{1} = \cfrac{\sqrt{5} + 1}{2} = \phi \approx \boxed{1.618} .

Rocco Dalto
Mar 5, 2021

A w 0 = 5 R 1 5 = R 1 + R 2 R 1 R 2 Aw_{0} = \sqrt{5}R_{1} \implies \sqrt{5} = \dfrac{R_{1} + R_{2}}{R_{1} - R_{2}} ( 5 1 ) R 1 = ( 5 + 1 ) R 2 \implies (\sqrt{5} - 1)R_{1} = (\sqrt{5} + 1)R_{2} \implies

R 2 = 5 1 5 + 1 R 1 R_{2} = \dfrac{\sqrt{5} - 1}{\sqrt{5} + 1}R_{1} and 5 = R 2 + R 3 R 2 R 3 R 3 = 5 1 5 + 1 R 2 = ( 5 1 5 + 1 ) 2 R 1 \sqrt{5} = \dfrac{R_{2} + R_{3}}{R_{2} - R_{3}} \implies R_{3} = \dfrac{\sqrt{5} - 1}{\sqrt{5} + 1}R_{2} = (\dfrac{\sqrt{5} - 1}{\sqrt{5} + 1})^2R_{1}

In General R n = ( ϕ 1 ϕ ) n 1 R 1 S = R 1 n = 1 R n = ϕ R 1 = ϕ 2 R R_{n} = (\dfrac{\phi - 1}{\phi})^{n - 1} R_{1} \implies S = R_{1}\sum_{n = 1}^{\infty} R_{n} = \phi R_{1} = \dfrac{\phi}{2}R \implies

2 S R = ϕ 1.61803398875 \dfrac{2S}{R} = \phi \approx \boxed{1.61803398875}

Nice problem and solution! You should specify that S is the sum of the radii of all the red circles.

David Vreken - 3 months, 1 week ago

Log in to reply

I thought I did. Thanks!

Rocco Dalto - 3 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...