The area bounded by the points lying in between the lines x + 5 = 0 and x − 5 = 0 satisfying the equation ∣ ⌊ y ⌋ ∣ = ∣ ∣ ⌊ tan − 1 ⌊ x ⌋ ⌋ ∣ ∣ is A.
Consider a function f : R → R . The graph of the above function has an asymptote 2 y = x + 2 . Then lim x → ∞ [ f ( x ) [ ( 2 f ( x ) + 1 ) ( 2 f ( x ) + 3 ) ( 2 f ( x ) − 5 ) ( 2 f ( x ) − 3 ) ( 2 f ( x ) − 1 ) ] 5 1 − f ( x ) ] x ( 2 f ( x ) − x ) = e L . Then ∣ A × L ∣ =
Details and assumptions :
∣ . ∣ represents Absolute Value function .
⌊ . ⌋ represents Greatest Integer function .
'e' represents exponential number .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
The shaded region in the above graph represents the given equation . And it sums up to 18. So A=18. The asymptote is given as y = 2 x + 1 . We know that if lim x → ∞ x f ( x ) = m , and lim x → ∞ ( f ( x ) − m x ) = c , then equation of the asymptote is given as y = m x + c . COMPARING this with the given equation of asymptote we have lim x → ∞ x f ( x ) = 2 1 and lim x → ∞ ( f ( x ) − 2 x ) = 1 . ∴ lim x → ∞ [ f ( x ) [ ( 2 f ( x ) + 1 ) ( 2 f ( x ) + 3 ) ( 2 f ( x ) − 5 ) ( 2 f ( x ) − 3 ) ( 2 f ( x ) − 1 ) ] 5 1 − f ( x ) ] x ( 2 f ( x ) − x ) W e c a n o b s e r v e t h a t t h e l i m i t i s o f t h e f o r m 1 ∞ = lim x → ∞ [ 1 + f ( x ) [ ( 2 f ( x ) + 1 ) ( 2 f ( x ) + 3 ) ( 2 f ( x ) − 5 ) ( 2 f ( x ) − 3 ) ( 2 f ( x ) − 1 ) ] 5 1 − 2 f ( x ) ] x ( 2 f ( x ) − x ) = e lim x → ∞ [ f ( x ) [ ( 2 f ( x ) + 1 ) ( 2 f ( x ) + 3 ) ( 2 f ( x ) − 5 ) ( 2 f ( x ) − 3 ) ( 2 f ( x ) − 1 ) ] 5 1 − 2 f ( x ) ] ( x ( 2 f ( x ) − x ) ) = e lim x → ∞ [ f ( x ) [ 3 2 ( f ( x ) ) 5 − 8 0 ( f ( x ) ) 4 − 8 0 ( f ( x ) ) 3 + 2 0 0 ( f ( x ) ) 2 + 1 8 f ( x ) − 4 5 ] 5 1 − ( 3 2 ( f ( x ) ) 5 ) 5 1 ] ( x ( 2 f ( x ) − x ) ) I f w e c o n s i d e r t = 3 2 ( f ( x ) ) 5 − 8 0 ( f ( x ) ) 4 − 8 0 ( f ( x ) ) 3 + 2 0 0 ( f ( x ) ) 2 + 1 8 f ( x ) − 4 5 a n d u = 3 2 ( f ( x ) ) 5 , t 5 1 − u 5 1 = t 5 4 + t 5 3 u 5 1 + t 5 2 u 5 2 + t 5 1 u 5 3 + u 5 4 t − u S o l v i n g a s a b o v e , L i m i t = e lim x → ∞ [ f ( x ) ( 8 0 ( f ( x ) ) 4 + t e r m s h a v i n g l o w e r p o w e r s o f f ( x ) ) − 8 0 ( f ( x ) ) 4 − 8 0 ( f ( x ) ) 3 + 2 0 0 ( f ( x ) ) 2 + 1 8 f ( x ) ] ( x ( 2 f ( x ) − x ) ) N o w , b y p u t t i n g lim x → ∞ f ( x ) x = 2 a n d lim x → ∞ ( 2 f ( x ) − x ) = 2 , w e g e t t h e l i m i t a s e − 4 . S o L = − 4 . ∴ ∣ A × L ∣ = ∣ 1 8 × ( − 4 ) ∣ = 7 2