A nice easy problem

Algebra Level 2

Which of these is greater 2017 ! 2017 \sqrt[2017]{2017!} or 2018 ! 2018 \sqrt[2018]{2018!} ?

2018 ! 2018 > 2017 ! 2017 \sqrt[2018]{2018!} > \sqrt[2017]{2017!} 2017 ! 2017 > 2018 ! 2018 \sqrt[2017]{2017!} > \sqrt[2018]{2018!} 2017 ! 2017 = 2018 ! 2018 \sqrt[2017]{2017!} = \sqrt[2018]{2018!}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Blan Morrison
Aug 31, 2018

We know x ! 2 π x × ( x e ) x x! \approx \sqrt{2\pi x}\times \left(\frac{x}{e}\right)^x

Therefore, x ! x ( 2 π x ) 1 2 x × x e \sqrt[x]{x!} \approx (2\pi x)^{\frac{1}{2x}} \times \frac{x}{e}

As x x gets arbitrarily large, 1 2 x \frac{1}{2x} goes to 0. If we plug in 2017 and 2018: 2018 e 2017 e = 1 e \frac{2018}{e}-\frac{2017}{e}=\frac{1}{e}

Therefore, 2017 ! 2017 < 2018 ! 2018 \boxed{\sqrt[2017]{2017!}<\sqrt[2018]{2018!}} by approximately 1 e \frac{1}{e} .

Brian Moehring
Aug 31, 2018

Note that f ( x ) = 2017 ! x 2018 f(x) = \sqrt[2018]{2017!\cdot x} is a strictly increasing function of x 0 x\geq 0 . Also, if we set G = 2017 ! 2017 , G = \sqrt[2017]{2017!}, then G 2017 = 2017 ! G^{2017} = 2017! and f ( G ) = G 2017 G 2018 = G 2018 2018 = G , f(G) = \sqrt[2018]{G^{2017} \cdot G} = \sqrt[2018]{G^{2018}} = G, so it follows that f ( x ) { < = > } G x { < = > } G f(x) \left\{\begin{array}{c} < \\ = \\ >\end{array}\right\} G \iff x \left\{\begin{array}{c} < \\ = \\ >\end{array}\right\} G or, by setting x = 2018 , x=2018, 2018 ! 2018 { < = > } 2017 ! 2017 2018 { < = > } 2017 ! 2017 \sqrt[2018]{2018!} \left\{\begin{array}{c} < \\ = \\ >\end{array}\right\} \sqrt[2017]{2017!} \iff 2018 \left\{\begin{array}{c} < \\ = \\ >\end{array}\right\} \sqrt[2017]{2017!}

To finish, note that 2017 ! 2017! is the product of 2017 2017 non-negative numbers all less than 2018 , 2018, so 2018 = 201 8 2017 2017 > 2017 ! 2017 2018 ! 2018 > 2017 ! 2017 2018 = \sqrt[2017]{2018^{2017}} > \sqrt[2017]{2017!} \implies \boxed{\sqrt[2018]{2018!} > \sqrt[2017]{2017!}}


Remark: The first part of my solution actually yields a method to give more inequalities. For instance, using AM-GM, 2017 ! 2017 < 1 + 2017 2 = 2018 2 2018 ! 2 2018 > 2017 ! 2017 \sqrt[2017]{2017!} < \frac{1+2017}{2} = \frac{2018}{2} \implies \sqrt[2018]{\frac{2018!}{2}} > \sqrt[2017]{2017!}

Anshul Agrawal
Aug 31, 2018

From the pattern- 1<root2!,root2!<cuberoot3!,cuberoot3!<fourth root of4!

P S
Dec 4, 2018

Suppose that 2018 ! 2018 = 2017 ! 2017 = x \sqrt[2018]{2018!}=\sqrt[2017]{2017!}=x . Then x 2018 = 2018 ! x^{2018}=2018! and x 2017 = 2017 ! x^{2017}=2017! , which means that:

x 2018 x 2017 = 2018 ! 2017 ! x = 2018 \frac{x^{2018}}{x^{2017}}=\frac{2018!}{2017!}\Leftrightarrow x=2018

But if x = 2018 x=2018 then x 2018 = 2018 ! x^{2018}=2018! and x 2017 = 2017 ! x^{2017}=2017! are both obviously FALSE ( 201 8 2018 2018 ! 2017 ! 2018^{2018}\neq 2018!\neq 2017! ), meaning that 2018 ! 2018 2017 ! 2017 \sqrt[2018]{2018!}\neq\sqrt[2017]{2017!} .

Next, let's assume that: 2018 ! 2018 < 2017 ! 2017 2018 ! 2018 2017 ! 2017 < 1 \sqrt[2018]{2018!}<\sqrt[2017]{2017!}\Leftrightarrow\frac{\sqrt[2018]{2018!}}{\sqrt[2017]{2017!}}<1

And assign x x and y y in the following way: y = 2018 ! 2018 y 2018 = 2018 ! x = 2017 ! 2017 x 2017 = 2017 ! y=\sqrt[2018]{2018!}\Leftrightarrow y^{2018}=2018! \\ x=\sqrt[2017]{2017!}\Leftrightarrow x^{2017}=2017! Then, our assumption means that: y x < 1 ( y x ) 2018 < 1 y 2018 x x 2017 < 1 x > 2018 ! 2017 ! x > 2018 \frac{y}{x}<1~\rightarrow ~\left(\frac{y}{x}\right)^{2018}<1\Leftrightarrow \\ \frac{y^{2018}}{x\cdot x^{2017}}<1\Leftrightarrow \\ x>\frac{2018!}{2017!}\Leftrightarrow x>2018 But if x > 2018 x>2018 then x 2017 = 2017 ! x^{2017}=2017! is (again) obviously FALSE (eg. 201 9 2017 2017 ! 2019^{2017}\neq2017! ), meaning that the assumption 2018 ! 2018 < 2017 ! 2017 \sqrt[2018]{2018!}<\sqrt[2017]{2017!} it's also FALSE.

Therefore 2018 ! 2018 > 2017 ! 2017 \boxed{\sqrt[2018]{2018!}>\sqrt[2017]{2017!}~} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...