A Nice Integral (1)

Calculus Level 3

2 4 ln ( 9 x ) ln ( 9 x ) + ln ( x + 3 ) d x = ? \large \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}} \, dx = \, ?


Source: Putnam (1987).
0 0 1 1 \infty 2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jun 11, 2016

Use a b f ( x ) d x = a b f ( a + b x ) d x \small{\displaystyle\int_a^bf(x)\mathrm{d}x=\displaystyle\int_a^bf(a+b-x)\mathrm{d}x}

W = 2 4 l n ( 9 x ) l n ( 9 x ) + l n ( x + 3 ) \mathfrak W=\displaystyle\int_{2}^{4}\dfrac{\sqrt{ln(9-x)}}{\sqrt{ln(9-x)}+\sqrt{ln(x+3)}} = 2 4 l n ( x + 3 ) l n ( x + 3 ) + l n ( 9 x ) =\displaystyle\int_{2}^{4}\dfrac{\sqrt{ln(x+3)}}{\sqrt{ln(x+3)}+ \sqrt{ln(9-x)}}

Adding the above two, we get :-

2 W = 2 4 d x 2\mathfrak W=\displaystyle\int_2^4\mathrm{d}x

W = 1 \Large \implies \mathfrak W=\boxed{\color{#3D99F6}{1}}~~~~~~~~~~~

Nice solution.

Hana Wehbi - 5 years ago
Hana Wehbi
Jun 12, 2016

The integral is continuous at [ 2 , 4 ] [2,4] . Let I I be the value of the integral.

( 9 x 9-x ) and ( x 3 x-3 ) go from 7 7 to 5 5 and from 5 5 to 7 7 as x g o e s f r o m 2 t o 4 x \ goes\ from \ 2 \ to\ 4 respectively;

This symmetry allows us to use the substitution x = 6 y x=6-y ;

I = 2 4 l n ( y + 3 ) l n ( y + 3 ) + l n ( 9 y ) I= \large \int_{2}^{4} \frac{\sqrt{ln(y+3)}}{\sqrt{ln(y+3)} +\sqrt{ln(9-y)}} d x dx ; \implies

2 I = 2 4 l n ( x + 3 ) + l n ( 9 x ) l n ( x + 3 ) + l n ( 9 x ) d x 2I= \large \int_{2}^{4} \frac{\sqrt{ln(x+3)}+\sqrt {ln(9-x)}}{\sqrt{ln(x+3)} +\sqrt{ln(9-x)}} dx = 2 4 d x \large \int_{2}^{4}dx = 4 2 = 2 4-2=2 \implies

I = 1 \boxed{I=1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...