A Nice Integral to Start the Year!

Calculus Level 5

The integral

0 ( 1 1 + x 2018 sin x 2019 x 2019 ) d x x \displaystyle \int_{0}^{\infty}{\left( \frac{1}{1+x^{2018}}-\frac{\sin{x^{2019}}}{x^{2019}}\right)\frac{dx}{x}}

is equal to A B γ C D \frac{A}{B} \gamma -\frac{C}{D} where A , B A,B and C , D C,D are coprime positive integers. Find A + B + C + D A+B+C+D

Note : γ \gamma is the Euler-Mascheroni constant

Bonus : Generalize for any integral in the form

0 ( 1 1 + x a sin x b x b ) d x x \displaystyle \int_{0}^{\infty}{\left( \frac{1}{1+x^{a}}-\frac{\sin{x^{b}}}{x^{b}}\right)\frac{dx}{x}} , where a , b > 0 a,b>0


The answer is 4040.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 3, 2019

Note that the substitution y = x a y = x^a gives us u 1 1 + x a d x x = 1 a u a d y ( 1 + y ) y = 1 a [ ln ( y 1 + y ) ] u a = 1 a ln ( 1 + u a ) ln u \int_u^\infty \frac{1}{1+x^a}\,\frac{dx}{x} \; = \; \frac{1}{a}\int_{u^a}^\infty \frac{dy}{(1+y)y} \; = \; \frac{1}{a}\Big[\ln\left(\frac{y}{1+y}\right)\Big]_{u^a}^\infty \; = \; \tfrac{1}{a}\ln(1 + u^a) - \ln u for any a > 1 a > 1 and u > 0 u > 0 . Thus lim u 0 + ( u 1 1 + x a d x x + ln u ) = 0 \lim_{u \to 0+} \left(\int_u^\infty \frac{1}{1+x^a}\,\frac{dx}{x} + \ln u\right) \; = \; 0 for all a > 1 a > 1 , and hence we deduce that 0 ( 1 1 + x a 1 1 + x b ) d x x = 0 a , b > 1 \int_0^\infty \left(\frac{1}{1+x^a} - \frac{1}{1+x^b}\right)\frac{dx}{x} \; = \; 0 \hspace{2cm} a,b > 1 Thus 0 ( 1 1 + x a sin x b x b ) d x x = 0 ( 1 1 + x b sin x b x b ) d x x = 1 b 0 ( 1 1 + y sin y y ) d y y = 1 b ( γ 1 ) \int_0^\infty \left(\frac{1}{1+x^a} - \frac{\sin x^b}{x^b}\right)\frac{dx}{x} \; = \; \int_0^\infty \left(\frac{1}{1+x^b} - \frac{\sin x^b}{x^b}\right)\,\frac{dx}{x} \; =\; \frac{1}{b}\int_0^\infty \left(\frac{1}{1+y} - \frac{\sin y}{y}\right)\,\frac{dy}{y} \; = \; \frac{1}{b}(\gamma-1) for any a , b > 1 a,b > 1 ; the last identity is a standard integral. Thus we have A = C = 1 A=C=1 and B = D = b B=D=b , and hence A + B + C + D = 2 ( b + 1 ) A+B+C+D=2(b+1) .

For this problem a = 2018 a=2018 and b = 2019 b=2019 , making the answer 4040 \boxed{4040} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...