The integral
∫ 0 ∞ ( 1 + x 2 0 1 8 1 − x 2 0 1 9 sin x 2 0 1 9 ) x d x
is equal to B A γ − D C where A , B and C , D are coprime positive integers. Find A + B + C + D
Note : γ is the Euler-Mascheroni constant
Bonus : Generalize for any integral in the form
∫ 0 ∞ ( 1 + x a 1 − x b sin x b ) x d x , where a , b > 0
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Note that the substitution y = x a gives us ∫ u ∞ 1 + x a 1 x d x = a 1 ∫ u a ∞ ( 1 + y ) y d y = a 1 [ ln ( 1 + y y ) ] u a ∞ = a 1 ln ( 1 + u a ) − ln u for any a > 1 and u > 0 . Thus u → 0 + lim ( ∫ u ∞ 1 + x a 1 x d x + ln u ) = 0 for all a > 1 , and hence we deduce that ∫ 0 ∞ ( 1 + x a 1 − 1 + x b 1 ) x d x = 0 a , b > 1 Thus ∫ 0 ∞ ( 1 + x a 1 − x b sin x b ) x d x = ∫ 0 ∞ ( 1 + x b 1 − x b sin x b ) x d x = b 1 ∫ 0 ∞ ( 1 + y 1 − y sin y ) y d y = b 1 ( γ − 1 ) for any a , b > 1 ; the last identity is a standard integral. Thus we have A = C = 1 and B = D = b , and hence A + B + C + D = 2 ( b + 1 ) .
For this problem a = 2 0 1 8 and b = 2 0 1 9 , making the answer 4 0 4 0 .