A Nice Relationship

Calculus Level 3

Let ( v , v , a ) (v, \vec{v}, \vec{a}) be the scalar speed, the vector velocity, and the vector acceleration of an object, respectively. If, at a particular instant, v = ( 1 , 2 , 3 ) \vec{v} = (1,2,3) and a = ( 1 , 1 , 2 ) \vec{a} = (-1,-1,2) , determine the rate of change of the speed ( d v d t ) (\frac{dv}{dt}) .

Note: The vector acceleration is the time-derivative of the vector velocity


The answer is 0.80178.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Chase
Apr 21, 2020

I came upon this today while solving another problem. It's kind of a cool property. @Karan Chatrath also has this in his solution.

v = v x 2 + v y 2 + v z 2 d v d t = 1 2 ( v x 2 + v y 2 + v z 2 ) 1 / 2 ( 2 v x a x + 2 v y a y + 2 v z a z ) = v a v v = \sqrt{v_x^2 + v_y^2 + v_z^2} \\ \frac{dv}{dt} = \frac{1}{2} (v_x^2 + v_y^2 + v_z^2)^{-1/2} (2 v_x a_x + 2 v_y a_y + 2 v_z a_z) \\ = \frac{\vec{v} \cdot \vec{a}}{v}

I took an unnecessarily long route to find the asnwer. This is a more elegant method. Thanks

Karan Chatrath - 1 year, 1 month ago
Karan Chatrath
Apr 21, 2020

Consider the following:

V = v x i ^ + v y j ^ + v z k ^ \vec{V} = v_x \ \hat{i} + v_y \ \hat{j} + v_z \ \hat{k} a = a x i ^ + a y j ^ + a z k ^ \vec{a} = a_x \ \hat{i} + a_y \ \hat{j} + a_z \ \hat{k} S = V = v x 2 + v y 2 + v z 2 S = \lvert \vec{V} \rvert = \sqrt{v_x^2 + v_y^2 + v_z^2}

Now, the velocity vector:

V = S ( v x v x 2 + v y 2 + v z 2 i ^ + v y v x 2 + v y 2 + v z 2 j ^ + v z v x 2 + v y 2 + v z 2 k ^ ) \vec{V} = S \left(\frac{v_x}{\sqrt{v_x^2 + v_y^2 + v_z^2}} \ \hat{i} + \frac{v_y}{\sqrt{v_x^2 + v_y^2 + v_z^2}} \ \hat{j}+\frac{v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}} \ \hat{k}\right)

V = S V ^ \implies \ \vec{V}=S \ \hat{V} d V d t = a = d S d t V ^ + S d V ^ d t ( 1 ) \implies \ \frac{d\vec{V}}{dt} = \vec{a} = \frac{dS}{dt} \ \hat{V} + S \ \frac{d\hat{V}}{dt} \ \dots \ (1)

Consider:

d V ^ d t = d d t ( v x v x 2 + v y 2 + v z 2 ) i ^ + d d t ( v y v x 2 + v y 2 + v z 2 ) j ^ + d d t ( v x v x 2 + v y 2 + v z 2 ) k ^ \frac{d\hat{V}}{dt} = \frac{d}{dt}\left(\frac{v_x}{\sqrt{v_x^2 + v_y^2 + v_z^2}}\right) \ \hat{i} + \frac{d}{dt}\left(\frac{v_y}{\sqrt{v_x^2 + v_y^2 + v_z^2}}\right) \ \hat{j}+ \frac{d}{dt}\left(\frac{v_x}{\sqrt{v_x^2 + v_y^2 + v_z^2}}\right) \ \hat{k}

Crunching out the derivatives and computing the following relation results in:

a S d V ^ d t = v x ( a x v x + a y v y + a z v z ) v x 2 + v y 2 + v z 2 i ^ + v y ( a x v x + a y v y + a z v z ) v x 2 + v y 2 + v z 2 j ^ + v z ( a x v x + a y v y + a z v z ) v x 2 + v y 2 + v z 2 k ^ \vec{a}-S\frac{d\hat{V}}{dt} = \frac{{v_x}\,\left({a_x}\,{v_x}+{a_y}\,{v_y}+{a_z}\,{v_z}\right)}{{{v_x}}^2+{{v_y}}^2+{{v_z}}^2} \ \hat{i} + \frac{{v_y}\,\left({a_x}\,{v_x}+{a_y}\,{v_y}+{a_z}\,{v_z}\right)}{{{v_x}}^2+{{v_y}}^2+{{v_z}}^2} \ \hat{j} + \frac{{v_z}\,\left({a_x}\,{v_x}+{a_y}\,{v_y}+{a_z}\,{v_z}\right)}{{{v_x}}^2+{{v_y}}^2+{{v_z}}^2} \ \hat{k} a S d V ^ d t = a x v x + a y v y + a z v z v x 2 + v y 2 + v z 2 ( v x i ^ + v y j ^ + v z k ^ ) \vec{a}-S\frac{d\hat{V}}{dt} = \frac{a_x v_x+a_y v_y+ a_z v_z}{v_x^2 + v_y^2 + v_z^2} \left(v_x \ \hat{i} + v_y \ \hat{j} + v_z \ \hat{k}\right) a S d V ^ d t = a x v x + a y v y + a z v z v x 2 + v y 2 + v z 2 V \vec{a}-S\frac{d\hat{V}}{dt} = \frac{a_x v_x+a_y v_y+ a_z v_z}{v_x^2 + v_y^2 + v_z^2} \vec{V} a S d V ^ d t = a x v x + a y v y + a z v z v x 2 + v y 2 + v z 2 V ^ \vec{a}-S\frac{d\hat{V}}{dt} = \frac{a_x v_x+a_y v_y+ a_z v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}} \hat{V}

The above expression, when compared to (1), shows that:

d S d t V ^ = a x v x + a y v y + a z v z v x 2 + v y 2 + v z 2 V ^ \frac{dS}{dt} \ \hat{V} = \frac{a_x v_x+a_y v_y+ a_z v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}} \hat{V} d S d t = a x v x + a y v y + a z v z v x 2 + v y 2 + v z 2 \implies \frac{dS}{dt} = \frac{a_x v_x+a_y v_y+ a_z v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}}

Plugging in numbers gives:

v x = 1 ; v y = 2 ; v z = 3 ; a x = 1 ; a y = 1 ; a z = 2 v_x = 1 \ ; \ v_y = 2 \ ; \ v_z = 3 \ ; \ a_x =-1 \ ; \ a_y = -1 \ ; \ a_z = 2

d S d t = 3 14 \boxed{\frac{dS}{dt} = \frac{3}{\sqrt{14}}}

Note:

d S d t = a x v x + a y v y + a z v z v x 2 + v y 2 + v z 2 \frac{dS}{dt} = \frac{a_x v_x+a_y v_y+ a_z v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}} d S d t = a V ^ \frac{dS}{dt} = \vec{a} \cdot \hat{V}

I do not see the intuition behind this yet.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...