A nice simple trigonometric equation

Geometry Level 3

Let the smallest positive value of θ \theta that satisfies the equation tan 2 θ + tan 3 θ = sec 3 θ \tan2\theta+\tan3\theta=\sec3\theta be π N . \dfrac{\pi}{N}. Find N . N.


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Trevor B.
Jun 10, 2020

The first thing that we should do is get rid of the secant and put this problem in terms of tangents. Squaring does the trick.

tan 2 2 θ + 2 tan 2 θ tan 3 θ + tan 2 3 θ = sec 2 3 θ = 1 + tan 2 3 θ . \tan^22\theta+2\tan2\theta\tan3\theta+\tan^23\theta=\sec^23\theta=1+\tan^23\theta. Simplifying, we have tan 2 2 θ + 2 tan 2 θ tan 3 θ 1 = 0. \tan^22\theta+2\tan2\theta\tan3\theta-1=0. Now, we are able to isolate tan 3 θ . \tan3\theta. 2 tan 2 θ tan 3 θ = 1 tan 2 2 θ , 2\tan2\theta\tan3\theta=1-\tan^22\theta, so tan 3 θ = 1 tan 2 2 θ 2 tan 2 θ . \tan3\theta=\dfrac{1-\tan^22\theta}{2\tan^2\theta}. That right-hand-side looks like a familiar identity; recall that tan 2 α = 2 tan α 1 tan 2 α . \tan2\alpha=\dfrac{2\tan\alpha}{1-\tan^2\alpha}. If we flip that around, we realize that our equation is now equivalent to tan 3 θ = 1 tan 4 θ \tan3\theta=\dfrac{1}{\tan4\theta} ! This simplifies to tan 3 θ tan 4 θ = 1. \tan3\theta\tan4\theta=1.

Now we are able to make use of the cosine addition formula. Converting to sines and cosines yields sin 3 θ sin 4 θ = cos 3 θ cos 4 θ , \sin3\theta\sin4\theta=\cos3\theta\cos4\theta, or cos 3 θ cos 4 θ sin 3 θ sin 4 θ = 0. \cos3\theta\cos4\theta-\sin3\theta\sin4\theta=0. This, of course, is equal to cos 7 θ = 0 , \cos7\theta=0, or θ = π 14 + π n 7 n Z . \theta=\dfrac{\pi}{14}+\dfrac{\pi n}{7}\forall n\in\mathbb{Z}. Thus, N = 14 . \boxed{N=14}.

You can directly get the result from tan 3 θ = 1 tan 4 θ = cot 4 θ = tan ( π 2 4 θ ) 3 θ = π 2 4 θ θ = π 14 \tan 3\theta=\frac{1}{\tan 4\theta}=\cot 4\theta=\tan (\frac{π}{2}-4\theta)\implies 3\theta=\frac{π}{2}-4\theta\implies \theta=\frac{π}{14} .

Log in to reply

This works in this case, but it won't always give the least positive answer, due to coterminal angles. It's better to calculate it out completely.

Ved Pradhan - 12 months ago
Chew-Seong Cheong
Jun 11, 2020

Similar solution as @Vilakshan Gupta 's.

tan 2 θ + tan 3 θ = sec 3 θ tan 2 θ = sec 3 θ tan 3 θ sin 2 θ cos 2 θ = 1 cos 3 θ sin 3 θ cos 3 θ sin 2 θ cos 3 θ = cos 2 θ sin 3 θ cos 2 θ sin 2 θ cos 3 θ + sin 3 θ cos 2 θ = cos 2 θ sin 5 θ = cos 2 θ sin 5 θ = sin ( π 2 2 θ ) 5 θ = π 2 2 θ 7 θ = π 2 θ = π 14 \begin{aligned} \tan 2 \theta + \tan 3 \theta & = \sec 3 \theta \\ \tan 2 \theta & = \sec 3 \theta - \tan 3 \theta \\ \frac {\sin 2 \theta}{\cos 2 \theta} & = \frac 1{\cos 3 \theta} - \frac {\sin 3 \theta}{\cos 3 \theta} \\ \sin 2 \theta \cos 3 \theta & = \cos 2 \theta - \sin 3 \theta \cos 2 \theta \\ \sin 2 \theta \cos 3 \theta + \sin 3 \theta \cos 2 \theta & = \cos 2 \theta \\ \sin 5 \theta & = \cos 2 \theta \\ \sin 5 \theta & = \sin \left(\frac \pi 2 - 2 \theta \right) \\ \implies 5 \theta & = \frac \pi 2 - 2 \theta \\ 7 \theta & = \frac \pi 2 \\ \implies \theta & = \frac \pi {\boxed{14}} \end{aligned}

Vilakshan Gupta
Jun 10, 2020

tan 2 θ + tan 3 θ = sin 2 θ cos 2 θ + sin 3 θ cos 3 θ = sin 5 θ cos 2 θ cos 3 θ = 1 cos 3 θ sin 5 θ = cos 2 θ = sin ( π 2 2 θ ) \tan2\theta+\tan3\theta=\dfrac{\sin2\theta}{\cos2\theta}+\dfrac{\sin3\theta}{\cos3\theta}=\dfrac{\sin5\theta}{\cos2\theta\cos3\theta}=\dfrac{1}{\cos3\theta} \implies \sin5\theta=\cos2\theta=\sin\left(\dfrac{\pi}{2}-2\theta\right) and for smallest θ \theta ,

We must have therefore 5 θ = π 2 2 θ θ = π 14 5\theta=\dfrac{\pi}{2}-2\theta \implies \theta=\boxed{\frac{\pi}{14}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...