A nice substitution

Calculus Level 3

Evaluate

0 ln ( x ) x 2 + 1 d x \large \int_0^\infty{\frac{\ln(x)}{x^2+1}dx}

1 1 π 4 \frac{\pi}{4} 0 0 π 6 \frac{\pi}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

X X
Jul 4, 2018

I = 0 ln ( x ) x 2 + 1 d x I=\displaystyle \int_0^\infty{\frac{\ln(x)}{x^2+1}dx}

= 0 ln ( 1 u ) 1 u 2 + 1 ( 1 u 2 ) d u =\displaystyle\int_\infty^0 \frac{\ln(\frac1u)}{\frac1{u^2}+1}(-\frac1{u^2})du (Put x = 1 u x=\frac1u )

= 0 ln ( u ) 1 + u 2 d u = I = 0 =\displaystyle\int_0^\infty \frac{-\ln(u)}{1+u^2}du=-I=0

I = 0 ln x x 2 + 1 d x Using 0 f ( x ) d x = 0 f ( 1 x ) x 2 d x = 1 2 0 ( ln x x 2 + 1 + ln 1 x x 2 ( 1 x 2 + 1 ) ) d x = 1 2 0 ( ln x x 2 + 1 ln x 1 + x 2 ) d x = 0 \begin{aligned} I & = \int_0^\infty \frac {\ln x}{x^2+1} dx & \small \color{#3D99F6} \text{Using }\int_0^\infty f(x) \ dx = \int_0^\infty \frac {f\left(\frac 1x\right)}{x^2}\ dx \\ & = \frac 12 \int_0^\infty \left(\frac {\ln x}{x^2+1} + \frac {\ln \frac 1x}{x^2\left(\frac 1{x^2}+1\right)} \right) dx \\ & = \frac 12 \int_0^\infty \left(\frac {\ln x}{x^2+1} - \frac {\ln x}{1+x^2} \right) dx \\ & = \boxed 0 \end{aligned}

Poca Poca
Jul 4, 2018

Let x = 1 t x = \frac{1}{t} and thus d x = d t t 2 dx = -\frac{dt}{t^2} .

I = 0 ln ( x ) x 2 + 1 d x = 0 ln ( 1 t ) ( 1 t ) 2 + 1 ( d t t 2 ) = 0 ln 1 ln t ( 1 t ) 2 t 2 + 1 t 2 d t = 0 ln t 1 + t 2 d t = 0 ln x 1 + x 2 d x = I \begin{aligned} I=\int_0^\infty{\frac{\ln(x)}{x^2+1}dx} &= \int_\infty^0{\frac{\ln\left(\frac{1}{t}\right)}{\left(\frac{1}{t}\right)^2+1} \left(-\frac{dt}{t^2}\right)}\\ &= -\int_\infty^0{\frac{\ln1 - \ln t}{\left(\frac{1}{t}\right)^2\cdot t^2+1\cdot t^2} dt} \\ &= \int_0^\infty{\frac{- \ln t}{1+t^2} dt} \\ &= \int_0^\infty{\frac{- \ln x}{1+x^2} dx} = -I \end{aligned}

Because I = I I=-I , we have I = 0 \boxed{I=0} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...