Let , where and .
Let be a solution to the above differential equation with the given conditions.
Find the positive value of for which .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let x 2 d x 2 d 2 y + x d x d y = x 2 ( d x d y ) 2
⟹ d x 2 d 2 y = ( d x d y ) 2 − x 1 d x d y
Let z = d x d y ⟹ d x d z = d x 2 d 2 y ⟹
d x d z = z 2 − x 1 z ⟹ d x d z + x 1 z = z 2 ⟹
z − 2 d x d z + x 1 z − 1 = 1
Let w = z − 1 ⟹ d x d w = − z − 2 d x d z ⟹ d x d z = − z 2 d x d w ⟹
d x d w − x 1 w = − 1 which is a first order linear differential equation ⟹
d x d ( e ∫ x − 1 d x ∗ w ) = − e ∫ x − 1 d x ⟹
x w = − ∫ x 1 d x + c 1 ⟹ w = x ( − ln ( x ) + c 1 )
w = z 1 ⟹ z = x ( − ln ( x ) + c 1 ) 1 and z = d x d y ⟹
y = − ∫ − ln ( x ) + c 1 − x 1 d x = − ln ( c 1 − ln ( x ) ) + c 2
y ( x ) = − ln ( c 1 − ln ( x ) ) + c 2
y ( 1 ) = 0 ⟹ c 2 = ln ( c 1 ) ⟹ y = ln ( c 1 − ln ( x ) c 1 ) and
y ( 2 ) = ln ( c 1 ) ⟹ ln ( 2 ) = ln ( c − 1 − ln ( 2 ) c 1 ) ⟹ 2 = c 1 − ln ( 2 ) c 1
⟹ c 1 = 2 ln ( 2 ) = ln ( 4 )
⟹ y p ( x ) = ln ( ln ( 4 ) − ln ( x ) ln ( 4 ) ) which has a vertical asymptote at x = 4 ⟹ a = 4 .
Note: Using y p ( x ) = ln ( ∣ ln ( 4 ) − ln ( ∣ x ∣ ) ∣ ln ( 4 ) ) ⟹ vertical asymptotes at x = ± 4 .