A NonLinear Differential Equation !

Level pending

Let x 2 d 2 y d x 2 + x d y d x = x 2 ( d y d x ) 2 x^2\dfrac{d^2y}{dx^2} + x\dfrac{dy}{dx} = x^2(\dfrac{dy}{dx})^2 , where y ( 1 ) = 0 y(1) = 0 and y ( 2 ) = ln ( 2 ) y(2) = \ln(2) .

Let y p ( x ) y_{p}(x) be a solution to the above differential equation with the given conditions.

Find the positive value of a a for which lim x a y p ( x ) = + \lim_{x \rightarrow a} y_{p}(x) = +\infty .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 15, 2020

Let x 2 d 2 y d x 2 + x d y d x = x 2 ( d y d x ) 2 x^2\dfrac{d^2y}{dx^2} + x\dfrac{dy}{dx} = x^2(\dfrac{dy}{dx})^2

d 2 y d x 2 = ( d y d x ) 2 1 x d y d x \implies \dfrac{d^2y}{dx^2} = (\dfrac{dy}{dx})^2 - \dfrac{1}{x}\dfrac{dy}{dx}

Let z = d y d x d z d x = d 2 y d x 2 z = \dfrac{dy}{dx} \implies \dfrac{dz}{dx} = \dfrac{d^2y}{dx^2} \implies

d z d x = z 2 1 x z d z d x + 1 x z = z 2 \dfrac{dz}{dx} = z^2 - \dfrac{1}{x}z \implies \dfrac{dz}{dx} + \dfrac{1}{x}z = z^2 \implies

z 2 d z d x + 1 x z 1 = 1 z^{-2}\dfrac{dz}{dx} + \dfrac{1}{x}z^{-1} = 1

Let w = z 1 d w d x = z 2 d z d x w = z^{-1} \implies \dfrac{dw}{dx} = -z^{-2}\dfrac{dz}{dx} \implies d z d x = z 2 d w d x \dfrac{dz}{dx} = -z^2\dfrac{dw}{dx} \implies

d w d x 1 x w = 1 \dfrac{dw}{dx} - \dfrac{1}{x}w = -1 which is a first order linear differential equation \implies

d d x ( e 1 x d x w ) = e 1 x d x \dfrac{d}{dx}(e^{\displaystyle\int \dfrac{-1}{x}dx} * w) = - e^{\displaystyle\int \dfrac{-1}{x}dx} \implies

w x = 1 x d x + c 1 w = x ( ln ( x ) + c 1 ) \dfrac{w}{x} = -\displaystyle\int \dfrac{1}{x} dx + c_{1} \implies w = x(-\ln(x) + c_{1})

w = 1 z z = 1 x ( ln ( x ) + c 1 ) w = \dfrac{1}{z} \implies z = \dfrac{1}{x(-\ln(x) + c_{1})} and z = d y d x z = \dfrac{dy}{dx} \implies

y = 1 x ln ( x ) + c 1 d x = ln ( c 1 ln ( x ) ) + c 2 y = -\displaystyle\int \dfrac{-\dfrac{1}{x}}{-\ln(x) + c_{1}} dx = -\ln(c_{1} - \ln(x)) + c_{2}

y ( x ) = ln ( c 1 ln ( x ) ) + c 2 \boxed{y(x) = -\ln(c_{1} - \ln(x)) + c_{2}}

y ( 1 ) = 0 c 2 = ln ( c 1 ) y = ln ( c 1 c 1 ln ( x ) ) y(1) = 0 \implies c_{2} = \ln(c_{1}) \implies y = \ln(\dfrac{c_{1}}{c_{1} - \ln(x)}) and

y ( 2 ) = ln ( c 1 ) ln ( 2 ) = ln ( c 1 c 1 ln ( 2 ) ) 2 = c 1 c 1 ln ( 2 ) y(2) = \ln(c_{1}) \implies \ln(2) = \ln(\dfrac{c_{1}}{c-{1} - \ln(2)}) \implies 2 = \dfrac{c_{1}}{c_{1} - \ln(2)}

c 1 = 2 ln ( 2 ) = ln ( 4 ) \implies c_{1} = 2\ln(2) = \ln(4)

y p ( x ) = ln ( ln ( 4 ) ln ( 4 ) ln ( x ) ) \implies y_{p}(x) = \ln(\dfrac{\ln(4)}{\ln(4) - \ln(x)}) which has a vertical asymptote at x = 4 a = 4 x = 4 \implies \boxed{a = 4} .

Note: Using y p ( x ) = ln ( ln ( 4 ) ln ( 4 ) ln ( x ) ) y_{p}(x) = \ln(\dfrac{\ln(4)}{|\ln(4) - \ln(|x|)|}) \implies vertical asymptotes at x = ± 4 x = \pm 4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...