A Notorious Inequality Problem-1

Algebra Level 3

For how many positive integers n n , does this inequality hold? ( n + 1 ) n ! > 2 n (n+1)\sqrt{n!}>2^n

4 Infinite 11 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mohammed Imran
May 7, 2020

We will prove that it holds for all n N , n 1 n\in \mathbb{N},n-{1} . Consider the expression ( 1 + 1 1 ) ( 1 + 1 2 ) . . . ( 1 + 1 n ) (1+\frac{1}{1})(1+\frac{1}{2})...(1+\frac{1}{n}) this expression is n + 1 n+1 . Also, ( 1 + 1 1 ) ( 1 + 1 2 ) . . . ( 1 + 1 n ) > ( 2 1 ) ( 2 2 ) . . . ( 2 n ) = 2 n n ! (1+\frac{1}{1})(1+\frac{1}{2})...(1+\frac{1}{n})>(\frac{2}{\sqrt{1}})(\frac{2}{\sqrt{2}})...(\frac{2}{\sqrt{n}})=\frac{2^n}{\sqrt{n!}} so, we can conclude that n + 1 > 2 n n ! ( n + 1 ) n ! > 2 n n+1>\frac{2^n}{\sqrt{n!}}\implies (n+1)\sqrt{n!}>2^n

Can you not say that if n = 1 is false and n = 2 is true, can you not say that the rest of the values are also true, making it infinite, @Mohammed Imran ?

A Former Brilliant Member - 1 year, 1 month ago

Nice induction probem.

Nitin Kumar - 1 year, 1 month ago
Tom Engelsman
May 7, 2020

Let use Induction to show the above inequality holds true for all positive integers n 2 n \ge 2 . If we rewrite it as n ! > 4 n ( n + 1 ) 2 n! > \frac{4^n}{(n+1)^2} , then we have:

CASE I ( n = 2 n= 2 ): 2 ! > 4 2 ( 2 + 1 ) 2 2 > 16 9 1.78 2! > \frac{4^2}{(2+1)^2} \Rightarrow 2 > \frac{16}{9} \approx 1.78 \Rightarrow (TRUE).

CASE II ( n = k ) : k ! > 4 k ( k + 1 ) 2 (n = k): k! > \frac{4^k}{(k+1)^2} \Rightarrow (ASSUMED TRUE).

CASE III ( n = k + 1 ) : (n=k+1): ( k + 1 ) k ! > 4 k ( k + 1 ) 2 ( k + 1 ) ; (k+1) \cdot k! > \frac{4^k}{(k+1)^2} \cdot (k+1);

or ( k + 1 ) ! > 4 k k + 1 4 ( k + 2 ) 2 4 ( k + 2 ) 2 ; (k+1)! > \frac{4^k}{k+1} \cdot \frac{4(k+2)^2}{4(k+2)^2};

or ( k + 1 ) ! > 4 k + 1 [ ( k + 1 ) + 1 ] 2 ( k + 2 ) 2 4 ( k + 1 ) ; (k+1)! > \frac{4^{k+1}}{[(k+1)+1]^2} \cdot \frac{(k+2)^2}{4(k+1)};

or ( k + 1 ) ! > 4 k + 1 [ ( k + 1 ) + 1 ] 2 k 2 + 4 k + 4 4 ( k + 1 ) ; (k+1)! > \frac{4^{k+1}}{[(k+1)+1]^2} \cdot \frac{k^2+4k+4}{4(k+1)};

or ( k + 1 ) ! > 4 k + 1 [ ( k + 1 ) + 1 ] 2 [ 1 + k 2 4 ( k + 1 ) ] > 4 k + 1 [ ( k + 1 ) + 1 ] 2 ; (k+1)! > \frac{4^{k+1}}{[(k+1)+1]^2} \cdot [1 + \frac{k^2}{4(k+1)}] > \frac{4^{k+1}}{[(k+1)+1]^2};

or ( k + 1 ) ! > 4 k + 1 [ ( k + 1 ) + 1 ] 2 \boxed{(k+1)! > \frac{4^{k+1}}{[(k+1)+1]^2}} \Rightarrow (TRUE).

Q . E . D . \mathbb{Q.} \mathbb{E.} \mathbb{D.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...