A Number Theory Problem By Akshay.....!!!

Find The last 3 Digits of 2 1 568 21^{568} ????


The answer is 561.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Isaac Jiménez
Aug 25, 2014

By The Fermat-Euler Theorem we know 21 400 1 m o d 1000 { 21 }^{ 400 }\equiv 1\quad mod\quad 1000 , so we only have to find 21 168 { 21 }^{ 168 } .

Now, see 21 5 101 m o d 1000 { 21 }^{ 5 }\equiv 101\quad mod\quad 1000 , applying it in the last equation 10 1 32 2 1 8 m o d 1000 101^{ 32 }*2{ 1 }^{ 8 }\quad mod\quad 1000 . See, 10 1 2 201 , 10 1 3 301 , . . . , 10 1 10 1 m o d 1000 101^{ 2 }\equiv 201,\quad 101^{ 3 }\equiv 301,\quad ...,\quad 10{ 1 }^{ 10 }\equiv 1\quad mod\quad 1000 . So we only have to find 10 1 2 2 1 8 201 361 561 m o d 1000 101^{ 2 }*2{ 1 }^{ 8 }\equiv 201*361\equiv \boxed { 561 } \quad mod\quad 1000 .

1
2
3
4
5
prod = 1
for i in range(1,569):
    prod *= 21
    prod %= 1000
print prod 

JuanTamad

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...