An algebra problem by Aman Dubey

Algebra Level 2

Simplify the expression: ( a b ) 3 + ( b c ) 3 + ( c a ) 3 ( a b ) ( b c ) ( c a ) \dfrac{ (a-b)^3 +(b-c)^3 + (c-a)^3}{(a-b)(b-c)(c-a)} .

Details And Assumptions :

  • a b c a\neq b\neq c
  • Use :- x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z x z ) x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy -yz - xz)


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let a b = x , b c = y , c a = z a-b=x,b-c=y,c-a=z Then x + y + z = 0 x+y+z=0 .Substituting this in the identity: x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y x z y z ) x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-xz-yz) We get that x 3 + y 3 + z 3 = 3 x y z x^3+y^3+z^3=3xyz .Hence: x 3 + y 3 + z 3 x y z = 3 x y z x y z = 3 \frac{x^3+y^3+z^3}{xyz}=\frac{3xyz}{xyz}=\boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...