I could just start cutting them off

Algebra Level 4

a = 1 2 1 + 2 2 3 + 3 2 5 + + 100 1 2 2001 b = 1 2 3 + 2 2 5 + 3 2 7 + + 100 1 2 2003 a = \dfrac{1^2}{1} + \dfrac{2^2}{3} + \dfrac{3^2}{5}+\ldots + \dfrac{1001^2}{2001}\\ b = \dfrac{1^2}{3} + \dfrac{2^2}{5} + \dfrac{3^2}{7}+\ldots+ \dfrac{1001^2}{2003}

Define a , b a,b as above. What is the closest integer to ( a b ) (a- b) ?


The answer is 501.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Ner
Jun 7, 2015

a b = 1 2 1 + 2 2 1 2 3 + 3 2 2 2 5 + . . . + 1001 2 1000 2 2001 1001 2 2003 = 1 + 1 + 1 + . . . + 1 1001 2 2003 = 1001 1001 2 2003 = 1001 ( 1 1001 2003 ) = 1001 × 1002 2003 = 500.749 \begin{aligned} a-b & =\frac{{1}^{2}}{1}+\frac{{2}^{2}-{1}^2}{3}+\frac{{3}^{2}-{2}^{2}}{5}+...+\frac{{1001}^{2}-{1000}^{2}}{2001}-\frac{{1001}^{2}}{2003} \\ & =1+1+1+...+1-\frac{{1001}^{2}}{2003} \\ & =1001-\frac{{1001}^{2}}{2003} \\ & =1001\left( 1-\frac { 1001 }{ 2003 } \right) \\ & =\frac { 1001\times 1002 }{ 2003 } \\ & = 500.749 \end{aligned}

The closest integer of 500.749 500.749 is 501 \huge \color{#3D99F6}{\boxed {501}}

I used the same way.

Niranjan Khanderia - 6 years ago

Did the same way but I entered 500 :(

A Former Brilliant Member - 5 years, 10 months ago
Robbie King
Jun 10, 2015

a = the sum from n=1 to 1001 of n^2/2n-1

b = the sum from n=1 to 1001 of n^2/2n+1

let a(n) = n^2/2n-1

and b(n) = n^2/2n+1

a(n+1) = (n+1)^2 / 2n+1

= n^2+2n+1 / 2n+1

= (n^2/2n+1) + 1

n^2/2n+1 = b(n), therefore:

a(n+1) - b(n) = 1

Therefore

(a-b) = 1^2/1 + 1000 - 1001^2/2003

(a-b) = 500.7498....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...