RMO 2014

Algebra Level 4

Let x 1 , x 2 , , x 2014 x_{1}, x_{2}, \ldots , x_{2014} be positive real numbers such that j = 1 2014 x j = 1 \displaystyle \sum_{j = 1}^{2014}x_{j} = 1 . Determine the smallest constant K K , such that K j = 1 2014 x j 2 1 x j 1. K \displaystyle\sum_{j = 1} ^ {2014} \dfrac{ x^2_{j} }{ 1 - x_{j} } \ge 1.


This problem is taken from RMO 2014.


The answer is 2013.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Department 8
Oct 19, 2015

Nihar Mahajan , please edit the question to

K j = 1 2014 x j 2 1 x j 1 \large{K\sum _{ j=1 }^{ 2014 }{ \frac { { x }_{ j }^{ 2 } }{ 1-{ x }_{ j } } } \ge 1}

By Cauchy-Schwarz Inequality/Titu's lemma, we have

j = 1 2014 x j 2 1 x j ( j = 1 2014 x j ) 2 j = 1 2014 ( 1 x j ) 1 2014 j = 1 2014 x j 1 2013 2013 j = 1 2014 x j 2 1 x j 1 \large{\sum _{ j=1 }^{ 2014 }{ \frac { { x }_{ j }^{ 2 } }{ 1-{ x }_{ j } } } \ge \frac { { \left( \sum _{ j=1 }^{ 2014 }{ { x }_{ j } } \right) }^{ 2 } }{ \sum _{ j=1 }^{ 2014 }{ \left( 1-{ x }_{ j } \right) } } \ge \frac { 1 }{ 2014-\sum _{ j=1 }^{ 2014 }{ { x }_{ j } } } \ge \frac { 1 }{ 2013 } \\2013\sum _{ j=1 }^{ 2014 }{ \frac { { x }_{ j }^{ 2 } }{ 1-{ x }_{ j } } \ge } 1}

this gives the smallest value of constant 2013 2013 .

Same Solution. And problem need edition.

Dev Sharma - 5 years, 7 months ago

Same Way!!

Kushagra Sahni - 5 years, 7 months ago
Amrit Anand
Dec 12, 2015

Kapil Chandak
Nov 20, 2015

Also can be done by M.S-A.M-G.M-H.M

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...