An algebra problem by Anish Roy

Algebra Level 4

Suppose ( x 1 , x 2 , , x n , ) (x_{1},x_{2}, \cdots ,x_{n}, \cdots ) is a sequence of positive real numbers such that x 1 x 2 x 3 x n x_{1} \geq x_{2} \geq x_{3} \geq \cdots \geq x_{n} \cdots , and for all n n .

x 1 1 + x 4 2 + x 9 3 + + x n 2 n 1 \frac {x_{1}}{1} + \frac {x_{4}}{2} + \frac {x_{9}}{3} + \cdots + \frac {x_{n^2}}{n} \leq 1

Then find the maximum value of

x 1 1 + x 2 2 + x 3 3 + + x k k \frac {x_{1}}{1} + \frac {x_{2}}{2} + \frac {x_{3}}{3} + \cdots + \frac {x_{k}}{k}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anish Roy
Aug 10, 2017

Let k k be a natural number and let n n be the unique integer such that ( n 1 ) 2 k < n 2 (n-1)^2 \leq k < n^2 Then we see that r = 1 k x r r ( x 1 1 + x 2 2 + x 3 3 ) + ( x 4 4 + x 5 5 + + x 8 8 ) + + ( x ( n 1 ) 2 ( n 1 ) 2 + + x k k + + x n 2 1 n 2 1 ) \displaystyle \sum_{r=1}^k \frac {x_{r}}{r} \leq (\frac {x_{1}}{1}+\frac {x_{2}}{2}+\frac {x_{3}}{3})+(\frac {x_{4}}{4}+\frac {x_{5}}{5}+ \cdots +\frac {x_{8}}{8})+ \cdots + (\frac {x_{(n-1)^2}}{(n-1)^2}+ \cdots +\frac {x_{k}}{k}+ \cdots +\frac {x_{n^2-1}}{n^2-1}) ( x 1 1 + x 1 1 + x 1 1 ) + ( x 4 4 + x 4 4 + + x 4 4 ) + + ( x ( n 1 ) 2 ( n 1 ) 2 + + x ( n 1 ) 2 ( n 1 ) 2 ) \leq (\frac {x_{1}}{1}+\frac {x_{1}}{1}+\frac {x_{1}}{1})+(\frac {x_{4}}{4}+\frac {x_{4}}{4}+ \cdots +\frac {x_{4}}{4})+ \cdots + (\frac {x_{(n-1)^2}}{(n-1)^2}+ \cdots +\frac {x_{(n-1)^2}}{(n-1)^2}) = 3 x 1 1 + 5 x 2 4 + + ( 2 n 1 ) x ( n 1 ) 2 ( n 1 ) 2 = \frac {3x_{1}}{1}+\frac {5x_{2}}{4}+\cdots+\frac {(2n-1)x_{(n-1)^2}}{(n-1)^2} = r = 1 n 1 ( 2 r + 1 ) x r 2 r 2 = \displaystyle \sum_{r=1}^{n-1} \frac {(2r+1)x_{r^2}}{r^2} r = 1 n 1 ( 3 r ) x r 2 r 2 \leq \displaystyle \sum_{r=1}^{n-1} \frac {(3r)x_{r^2}}{r^2} = 3 r = 1 n 1 x r 2 r = 3\displaystyle \sum_{r=1}^{n-1} \frac {x_{r^2}}{r} 3 \leq 3 where the last inequality follows from the given hypothesis.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...