Primes and squares

Find all quadruples ( p , q , r , s ) (p,q,r,s) of distinct primes such that p + q + r + s p+q+r+s is also a prime and both p 2 + q s p^2+qs and p 2 + q r p^2+qr are perfect squares.

If there are n n quadruples ( p i , q i , r i , s i ) (p_i,q_i,r_i,s_i) for i ( 1 , 2 , 3 , , n ) i \in (1,2,3,\cdots ,n)

Then enter your answer as n + i = 1 n ( p i + q i + r i + s i ) 23 n + \displaystyle \sum_{i=1}^n (p_i+q_i+r_i+s_i) - 23 .


This is part of the set My Problems and THRILLER .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We can see that, ( p + q + r + s ) being a prime has to be odd . Thus,at least one of p , q , r , s has to be even. But since p , q , r , s are distinct primes exactly one of them has to be 2. \text{We can see that,} (p+q+r+s) \text{being a prime has to be odd .} \text{ Thus,at least one of } p,q,r,s \text{ has to be even.}\\\text{But since } p,q,r,s\text{ are distinct primes exactly one of them has to be 2.} \\

Let, \text {Let, }

p 2 + q s = n 2 \ p 2 + q r = m 2 Assume q=2 , p 2 + 2 s = n 2 ( n 2 p 2 ) ( m o d 4 ) 2 s ( m o d 4 ) ( n 2 p 2 ) ( m o d 4 ) 0 , 1 , 1 As, n 2 , p 2 ( m o d 4 ) 0 , 1 2 s ( m o d 4 ) 2 As, s is an odd prime ( n 2 p 2 ) ( m o d 4 ) ≢ 2 s ( m o d 4 ) n 2 p 2 2 s or q 2 Similary we can prove r, s 2 p = 2 As p=2 ,we can write, 4 + q s = n 2 4 + q r = m 2 n 2 4 = q s ( n + 2 ) ( n 2 ) = q s Similarly ( m + 2 ) ( m 2 ) = q r we have n 2 m 2 As, s r Let, n > m Since q,r,s are primes we have , q = ( n 2 ) = ( m + 2 ) r = ( n + 2 ) s = ( m 2 ) n m = 4 As q = ( n 2 ) = ( m + 2 ) Rewriting in terms of m, r = m + 6 q = m + 2 s = m 2 r ( m o d 3 ) m ( m o d 3 ) s ( m o d 3 ) m + 1 ( m o d 3 ) q ( m o d 3 ) m + 2 ( m o d 3 ) At least one of q,r,s is divisible by 3 Since q,r,s are distinct primes exactly one of q,r,s=3 However, if r,q=3,s will be negative s = 3 q = 7 r = 11 Also if we had assumed m>n ,r and s would just interchange their values Thus the possible solutions are , ( 2 , 7 , 3 , 11 ) and ( 2 , 7 , 11 , 3 ) n + ( i = 1 n ( p i + q i + r i + s i ) ) 23 = 2 + 2 × ( 2 + 3 + 7 + 11 ) 23 = 25 P.S. : Sorry for the lengthy solution. \normalsize\color{#333333}\begin{aligned} p^2+qs&=n^2\\\ p^2+qr&=m^2\\\\ \text{Assume q=2}&,\\ \implies p^2+2s&=n^2\\ (n^2-p^2)\pmod{4}&\equiv2s\pmod{4}\\ (n^2-p^2) \pmod{4}&\equiv0,1,-1 \hspace{16mm} \small\color{#3D99F6}\text{As, }n^2,p^2 \pmod{4}\equiv0,1\\ 2s\pmod{4}&\equiv2 \hspace{16mm} \small\color{#3D99F6}\text{As, s is an odd prime }\\ \implies(n^2-p^2)\pmod{4}&\not\equiv 2s\pmod{4}\\ \implies n^2-p^2&\neq2s \\ \text{ or } q&\neq2\\\\ \text{Similary we can prove r, s} &\neq2\\ \implies p&=2\\\\ \text{As p=2 ,we can write,}\\ 4+qs&=n^2\\ 4+qr&=m^2\\ n^2-4&=qs\\ (n+2)(n-2)&=qs\\ \text{Similarly }(m+2)(m-2)&=qr\\ \text{we have } n^2&\neq m^2 \hspace {7mm}\small\color{#3D99F6}\text{As, }s\neq r\\ \text{Let, }n&>m\\ \text{Since q,r,s are primes we}& \text{ have},\\ q&=(n-2)=(m+2)\\ r&=(n+2)\\ s&=(m-2)\\ \implies n-m&=4\hspace{16mm}\small\color{#3D99F6}\text{As } q=(n-2)=(m+2)\\ \text{Rewriting in terms of m,}\\ r&=m+6\\ q&=m+2\\ s&=m-2\\ r\pmod{3}&\equiv m\pmod{3}\\ s\pmod{3}&\equiv m+1\pmod{3}\\ q\pmod{3}&\equiv m+2\pmod{3}\\ \implies\text{ At least one of q,r,s}&\text{ is divisible by } 3 \\\\ \text{Since q,r,s are distinct}&\text{ primes exactly one of q,r,s=3}\\\\ \text{However, if r,q=3,s will}&\text{ be negative}\\\\ \implies s&=3\\ q&=7\\ r&=11\\ \text{Also if we had assumed}&\text{ m>n ,r and s would just interchange their values }\\\\ \text{Thus the possible }&\text{solutions are ,}\\ (2,7,3,11) \text{ and } &(2,7,11,3)\\\\ n+\left(\sum_{i=1}^n(p_{i}+q_{i}+r_{i}+s_{i})\right)-23&=2+2\times(2+3+7+11)-23\\ &=\color{#EC7300}\boxed{\color{#333333}25}\\\\\\\\\\\\ \text{P.S. : Sorry for the lengthy solution.} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...