Ones, Twos And Threes

Which of the following is equal to

0.123 123 123 123 ? 0.123 \, 123 \, 123 \, 123 \, \ldots ?

41 333 \frac{41}{333} 123 333 \frac{123}{333} 123 1000 \frac{ 123}{1000} 123 1001 \frac{123}{1001}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

F F
Jul 25, 2016

Let x = 0.123 123 123 ....................... ---- 1
Then 1000x = 123.123 123 123 ........................... ------- 2
Subtacting (1) from (2) , we get :
1000 x - x = (123.123 123 123 ...................) - (0.123 123 123 ............................)
or 999x = 123
or x = 123 999 \frac{123}{999} = 41 333 \frac{41}{333} Q.E.D

Please email this solution to muramallaswaroop@gmail.com

Swaroop Muramalla - 4 years, 10 months ago

Relevant wiki: Converting Decimals and Fractions

Lemma: \underline{\textbf{Lemma:}} 0. a 1 a 2 a 3 a n = a 1 a 2 a 3 a n 99 999 n 9 s 0.\overline{a_1a_2a_3\cdots a_n}=\frac{\overline{a_1a_2a_3\cdots a_n}}{\underbrace{99\cdots 999}_{n\;9's}}

Using the lemma with n = 3 and a 1 a 2 a 3 = 123 , we get that: 0.123123123 = 123 999 = 41 333 \text{Using the lemma with}\; n=3\;\text{and}\;\overline{a_1a_2a_3}=123,\text{we get that:}\\ 0.123123123\cdots=\frac{123}{999}=\color{#20A900}{\boxed{\boxed{\frac{41}{333}}}}


Proof of Lemma: \underline{\textbf{Proof of Lemma:}}

Let x = 0. a 1 a 2 a 3 a n 1 0 n x = a 1 a 2 a 3 a n . a 1 a 2 a 3 a n 1 0 n x x = a 1 a 2 a 3 a n . a 1 a 2 a 3 a n 0. a 1 a 2 a 3 a n ( 1 0 n 1 ) x = a 1 a 2 a 3 a n x = a 1 a 2 a 3 a n 1 0 n 1 \begin{aligned}\text{Let}\quad x&=0.\overline{a_1a_2a_3\cdots a_n}\\ \implies 10^{n}x&=\overline{a_1a_2a_3\cdots a_n}.\overline{a_1a_2a_3\cdots a_n}\\ 10^{n}x-x&=\overline{a_1a_2a_3\cdots a_n}.\overline{a_1a_2a_3\cdots a_n}-0.\overline{a_1a_2a_3\cdots a_n}\\ (10^{n}-1)x&=\overline{a_1a_2a_3\cdots a_n}\\ x&=\boxed{\frac{\overline{a_1a_2a_3\cdots a_n}}{10^{n}-1}}\end{aligned}


Notations: \underline{\textbf{Notations:}}

X 1 X 2 X 3 X n denotes the number formed by the concatenation of the digits X 1 , X 2 , X 3 , , X n \overline{X_1X_2X_3\cdots X_n}\;\text{denotes the number formed by the concatenation of the digits} \; X_1,X_2,X_3,\cdots,X_n

Please email this solution to muramallaswaroop@gmail.com

Swaroop Muramalla - 4 years, 10 months ago
Deva Craig
Aug 6, 2017

The number 0.123123123123... = 0.123 + 0.000123 + 0.000000123 + . . . 0.123123123123...= 0.123 + 0.000123 + 0.000000123 + ...

With that in mind, we can write the number 0.123123123123... 0.123123123123... as a geometric series. Therefore, we can find our fractional equivalent by using the formula:

S n S_n = a 1 a_1 1 r n 1 r \frac{1-r^n}{1-r}

S n S_n = Sum a 1 a_1 = First Term r r = Common Ratio n n = Number of Elements

Since we are looking for an approximation, let's suppose we use 100 of those summands in the infinite sum above. For our solution, the values for the variables are as follows:

S n S_n = 0.123123123123 a 1 a_1 = 0.123 r r = 1/1000 n n = 100

Plug them into the formula

0.123123123123 0.123123123123 = 0.123 0.123 1 ( 1 / 1000 ) 100 1 1 / 1000 \frac{1-(1/1000)^{100}}{1-1/1000}

In the numerator, we will be left with 1, since subtracting 0.0000000000000000000... from 1 will give you 1. (See this link for more info)

0.123 0.123 ( 1 1000 / 1000 1 / 1000 \frac{1}{1000/1000-1/1000} ) = 0.123 0.123 ( 1 999 / 1000 \frac{1}{999/1000} )

= 0.123 999 / 1000 \frac{0.123}{999/1000} = 123 999 \frac{123}{999}

41 / 333 \boxed{41/333}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...