a.b=?

Algebra Level 1

If a + b = 20 a+b=20 for positive numbers a a and b b , find the maximum value of a × b a \times b .

75 101 96 99 100

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Syed Baqir
Sep 16, 2015

A r i t h m e t i c M e a n G e o m e t r i c M e a n a + b 2 a b S q u a r e B o t h S i d e s ( a + b ) 2 a b ( 20 ) 2 4 a b 400 4 a b H e n c e 100 a b Arithmetic\quad Mean\quad \ge \quad Geometric\quad Mean\\ \frac { a\quad +\quad b }{ 2 } \quad \ge \quad \sqrt { ab } \\ Square\quad Both\quad Sides\\ \Longrightarrow \quad (a\quad +\quad b\quad )^{ 2 }\quad \ge \quad ab\\ \Longrightarrow \quad \frac { (20)^{ 2 } }{ 4 } \quad \ge \quad ab\\ \twoheadrightarrow \quad \frac { 400 }{ 4 } \ge \quad ab\quad \\ Hence\quad 100\quad \ge \quad ab

Ashish Menon
May 29, 2016

a + b = 100 a + b = 100 . Let a = b = 10 a = b = 10 . So, maximum value of a × b = 10 × 10 = 100 a × b = 10 × 10 = \color{#69047E}{\boxed{100}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...