Let and denote the number of zeros and ones, respectively, when is written in base two .
If the value of the series above is equal to , where denotes the Euler-Mascheroni constant , find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The number N 0 ( n ) + N 1 ( n ) is just the number of digits in the binary expansion of n . Thus N 0 ( n ) + N 1 ( n ) = m for 2 m − 1 ≤ n < 2 m for any m ≥ 1 . Thus the sum is S = = = = = = m = 1 ∑ ∞ n = 2 m − 1 ∑ 2 m − 1 n ( 2 n + 1 ) m = m = 1 ∑ ∞ 2 m n = 2 m − 1 ∑ 2 m − 1 ( 2 n 1 − 2 n + 1 1 ) m = 1 ∑ ∞ 2 m n = 2 m ∑ 2 m + 1 − 1 n ( − 1 ) n = m = 1 ∑ ∞ 2 m ⎩ ⎨ ⎧ 2 n = 2 m − 1 ∑ 2 m − 1 2 n 1 − n = 2 m ∑ 2 m + 1 − 1 n 1 ⎭ ⎬ ⎫ m = 1 ∑ ∞ 2 m ⎩ ⎨ ⎧ 2 n = 1 ∑ 2 m − 1 n − 1 − n = 1 ∑ 2 m − 1 − 1 n − 1 − n = 1 ∑ 2 m + 1 − 1 n − 1 ⎭ ⎬ ⎫ m = 1 ∑ ∞ 2 m ⎩ ⎨ ⎧ 2 n = 1 ∑ 2 m n − 1 − n = 1 ∑ 2 m − 1 n − 1 − n = 1 ∑ 2 m + 1 n − 1 + 2 − m − 1 ⎭ ⎬ ⎫ 2 + m = 1 ∑ ∞ 2 m { 2 [ S 2 m + ln 2 m ] − [ S 2 m − 1 + ln 2 m − 1 ] − [ S 2 m + 1 + ln 2 m + 1 ] } 2 + m = 1 ∑ ∞ 2 m [ 2 S 2 m − S 2 m − 1 − S 2 m + 1 ] where S n = m = 1 ∑ n m − 1 − ln n , noting that S n = γ + o ( n − 1 ) as n → ∞ . But then S = = = = = 2 + M → ∞ lim m = 1 ∑ M 2 m [ 2 S 2 m − S 2 m − 1 − S 2 m + 1 ] 2 + M → ∞ lim { m = 1 ∑ M 4 m S 2 m − m = 0 ∑ M − 1 2 ( m + 1 ) S 2 m − m = 2 ∑ M + 1 2 ( m − 1 ) S 2 m } M → ∞ lim [ ( 2 M + 2 ) S 2 M − 2 M S 2 M + 1 ] 2 γ + M → ∞ lim [ ( 2 M + 2 ) ( S 2 M − γ ) − 2 M ( S 2 M + 1 − γ ) ] 2 γ making the answer 2 ..