A number theory problem by Ilham Saiful Fauzi

Number Theory Level pending

Let a n a_{n} is a sequence of natural number such that a 1 = 1 a_{1}=1 , a 2 = 2 a_{2}=2 and a n = a n 1 a n + 1 1 a_{n}=a_{n-1}a_{n+1}-1 for n 3 n \ge 3 . Then find the value of a 2017 a_{2017} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 28, 2017

Consider the following:

a n = a n 1 a n + 1 1 a n 1 = a n + 1 a n + 1 a n + 1 = a n + 1 a n 1 a n + 4 = a n + 3 + 1 a n + 2 = ( a n + 2 + 1 a n + 1 + 1 ) 1 a n + 2 = 1 a n + 1 + 1 + a n + 1 a n + 1 a n + 2 = 1 a n + 1 + 1 + a n + 1 a n + 1 a n a n + 1 + 1 = 1 + a n a n + 1 = a n 1 Putting k = n 1 a k + 5 = a k \begin{aligned} a_n & = a_{n-1}a_{n+1}-1 \\ \implies \color{#3D99F6} a_{n-1} & = \color{#3D99F6}\frac {a_n+1}{a_{n+1}} \\ \implies a_{n+1} & = \frac {a_n+1}{a_{n-1}} \\ \implies a_{n+4} & = \frac {a_{n+3}+1}{a_{n+2}} \\ & = \left(\frac {a_{n+2}+1}{a_{n+1}} +1 \right) \cdot \frac 1{a_{n+2}} \\ & = \frac 1{a_{n+1}} + \frac {1+a_{n+1}}{a_{n+1}a_{n+2}} \\ & = \frac 1{a_{n+1}} + \frac {1+a_{n+1}}{a_{n+1}} \cdot \frac {a_n}{a_{n+1} + 1} \\ & = \color{#3D99F6} \frac {1+a_n}{a_{n+1}} \\ & = \color{#3D99F6} a_{n-1} & \small \color{#3D99F6} \text{Putting }k = n-1 \\ \implies a_{k+5} & = a_k \end{aligned}

Therefore, a n a_n has a period of 5. And a 2017 = a 2017 mod 5 = a 2 = 2 a_{2017} = a_{2017 \text{ mod 5}} = a_2 = \boxed{2} .

Tapas Mazumdar
Apr 28, 2017

We can write

a n = a n 1 a n + 1 1 a n + 1 = a n + 1 a n 1 a_n = a_{n-1} a_{n+1} - 1 \implies a_{n+1} = \dfrac{a_n +1}{a_{n-1}}

The first few terms of the sequence are

a 1 = 1 a 2 = 2 a 3 = a 2 + 1 a 1 = 3 a 4 = a 3 + 1 a 2 = 2 a 5 = a 4 + 1 a 3 = 1 a 6 = a 5 + 1 a 4 = 1 a 7 = a 6 + 1 a 5 = 2 a 8 = a 7 + 1 a 6 = 3 a 9 = a 8 + 1 a 7 = 2 a 10 = a 9 + 1 a 8 = 1 a 11 = a 10 + 1 a 9 = 1 \begin{aligned} a_1 && &=& 1 \\ a_2 && &=& 2 \\ a_3 &=& \dfrac{a_2 +1}{a_1} &=& 3 \\ a_4 &=& \dfrac{a_3 +1}{a_2} &=& 2 \\ a_5 &=& \dfrac{a_4 +1}{a_3} &=& 1 \\ a_6 &=& \dfrac{a_5 +1}{a_4} &=& 1 \\ a_7 &=& \dfrac{a_6 +1}{a_5} &=& 2 \\ a_8 &=& \dfrac{a_7 +1}{a_6} &=& 3 \\ a_9 &=& \dfrac{a_8 +1}{a_7} &=& 2 \\ a_{10} &=& \dfrac{a_9 +1}{a_8} &=& 1 \\ a_{11} &=& \dfrac{a_{10} +1}{a_9} &=& 1 \end{aligned}

We observe the pattern

a k : = { 1 if k 0 or k 1 ( m o d 5 ) 2 if k 2 or k 4 ( m o d 5 ) 3 if k 3 ( m o d 5 ) a_k := \begin{cases} 1 & \text{if } k \equiv 0 \text{ or } k \equiv 1 \pmod{5} \\ 2 & \text{if } k \equiv 2 \text{ or } k \equiv 4 \pmod{5} \\ 3 & \text{if } k \equiv 3 \pmod{5} \end{cases}

Since 2017 2 ( m o d 5 ) 2017 \equiv 2 \pmod{5} , so we have a 2017 = 2 a_{2017} = \boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...