A number theory problem by jitendriya praharaj

Find the remainder when 2 2014 2^{2014} is divided by 1000.


The answer is 384.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We need to find 2 2014 mod 1000 2^{2014} \text{ mod }1000 . Let us consider 2 2014 mod 8 2^{2014} \text{ mod }8 and 2 2014 mod 125 2^{2014} \text{ mod }125 , since 1000 = 2 3 5 3 = 8 125 1000 = 2^3 \cdot 5^3 = 8 \cdot 125 , separately.

2 2014 0 (mod 8) 2 2014 8 n (mod 1000) . . . ( 1 ) where n is a positive integer. \begin{aligned} 2^{2014} & \equiv 0 \text{ (mod 8)} \\ \implies 2^{2014} & \equiv 8n \text{ (mod 1000)} \quad ...(1) & \small \color{#3D99F6}{\text{where }n \text{ is a positive integer.}} \end{aligned}

2 2014 2 2014 mod ϕ ( 125 ) (mod 125) As gcd ( 2 , 125 ) = 1 , Euler’s theorem applies. 2 2014 mod 100 (mod 125) Euler totient function ϕ ( 125 ) = 100 2 14 ( 2 7 ) 2 12 8 2 3 2 9 (mod 125) \begin{aligned} 2^{2014} & \equiv 2^{2014 \text{ mod }\color{#3D99F6}{\phi(125)}} \text{ (mod 125)} & \small \color{#3D99F6}{\text{As }\gcd (2, 125) = 1 \text{, Euler's theorem applies.}} \\ & \equiv 2^{2014 \text{ mod }\color{#3D99F6}{100}} \text{ (mod 125)} & \small \color{#3D99F6}{\text{Euler totient function }\phi(125) = 100} \\ & \equiv 2^{\color{#3D99F6}{14}} \equiv (2^7)^2 \equiv 128^2 \equiv 3^2 \\ & \equiv 9 \text{ (mod 125)} \end{aligned}

From ( 1 ) (1) , we have

8 n 9 (mod 125) 8 n = 125 m + 9 where m is a positive integer. n = 125 m + 9 8 For integer n , m must be odd. \begin{aligned} 8n & \equiv 9 \text{ (mod 125)} \\ \implies 8n & = 125m + 9 & \small \color{#3D99F6}{\text{where }m \text{ is a positive integer.}} \\ n & = \frac {125m + 9}8 & \small \color{#3D99F6}{\text{For integer }n, m \text{ must be odd.}} \end{aligned}

When m = 3 m = 3 , n = 125 ( 3 ) + 9 8 = 375 + 9 8 = 384 8 = 48 n = \dfrac {125(3) + 9}8 = \dfrac {375 + 9}8 = \dfrac {384}8 = 48 .

From ( 1 ) : 2 2014 8 n 384 (mod 1000) (1): \quad 2^{2014} \equiv 8n \equiv \boxed{384} \text{ (mod 1000)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...