Let X = 9 1 + 9 2 + . . . + 9 2 4 4
Find the remainder when X is divided by 1000.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@K. J. W. Nice problem!!!!
X = 9 1 + 9 2 + 9 3 . . . . + 9 2 4 4
Then, X = 9 − 1 9 ( 9 2 4 4 − 1 )
Therefore, we have to find
8 9 ( 9 2 4 4 − 1 ) mod\quad 9
So, we have to find 9 2 4 4 mod\quad 9
From Euler's theorem,
9 φ ( 1 0 0 0 ) = 1 mod 1000
9 4 0 0 = 1 mod 1000
9 2 0 0 = 1 mod 1000
Now, 9 4 4 can be found easily and so,
9 2 4 4 = 161 mod 1000
Putting this value in above equation, we get
\(\frac { 9(160) }{ 8 } ) = 9 * 20 = 180
Ask me here if you are not able to understand how to find 9^44!!
Problem Loading...
Note Loading...
Set Loading...
N o t e t h a t 9 n + 9 n + 1 = 9 n ( 9 + 1 ) = 1 0 ( 9 n ) T h e r e f o r e 9 1 + 9 2 + . . . + 9 2 4 4 = 1 0 ( 9 1 + 9 3 + . . . + 9 2 4 3 ) S o w e o n l y n e e d t o n o t e t h e l a s t t w o d i g i t s o f e a c h o f 9 1 , 9 3 , . . . , 9 2 4 3 s i n c e t h e y w i l l b e c o m e t h e t h i r d a n d s e c o n d l a s t d i g i t s o f X a n d t h e l a s t d i g i t o f X w i l l b e 0 . A l s o n o t e t h a t 9 ( m o d 1 0 0 ) × 8 1 ≡ 2 9 ( m o d 1 0 0 ) 2 9 ( m o d 1 0 0 ) × 8 1 ≡ 4 9 ( m o d 1 0 0 ) 4 9 ( m o d 1 0 0 ) × 8 1 ≡ 6 9 ( m o d 1 0 0 ) 6 9 ( m o d 1 0 0 ) × 8 1 ≡ 8 9 ( m o d 1 0 0 ) 8 9 ( m o d 1 0 0 ) × 8 1 ≡ 9 ( m o d 1 0 0 ) T h e r e f o r e 9 1 + 9 3 + . . . + 9 2 4 3 ( m o d 1 0 0 ) ≡ 2 4 ( 9 + 2 9 + 4 9 + 6 9 + 8 9 ) + 9 + 2 9 ( m o d 1 0 0 ) ≡ 5 8 8 0 + 3 8 ( m o d 1 0 0 ) ≡ 5 9 1 8 ( m o d 1 0 0 ) ≡ 1 8 ( m o d 1 0 0 ) S o t h e l a s t 3 d i g i t s o f X a r e 1 8 × 1 0 = 1 8 0