Infinite

Algebra Level 1

1 4 , 1 4 2 , 1 4 3 , 1 4 4 , 1 4 5 , \large \frac{1}{4},\frac{1}{4^{2}}, \frac{1}{4^{3}}, \frac 1{4^4}, \frac 1{4^5}, \cdots

What the sum of the infinite sequence above?

4 4 3 3 1 4 \frac 14 1 3 \frac 13

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Swagat Panda
Aug 14, 2016

Using the formula S = a 1 r , where a = 1 4 and r = 1 4 we get : \text{Using the formula } {S_{\infty}={\dfrac{a}{1-r}}} \text{, where } a=\dfrac{1}{4} \text{ and } r=\dfrac{1}{4} \text{ we get :} S = 1 4 1 1 4 = 1 4 3 4 = 1 3 S_{\infty}={\dfrac{\dfrac14}{1-\dfrac14}=\dfrac{\dfrac14}{\dfrac34}}=\dfrac13

ya your right thanks for your solution..

lorenz navales - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...