A number theory problem by Madhavarapu Revanth

Find the unit digit of the product 3 2007 × 7 2008 × 1 3 2009 3^{2007} \times 7^{2008} \times 13^{2009} .

1 7 3 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 12, 2016

Since 10 10 is coprime to 3 3 , 7 7 and 13 13 , by Euler totient theorem we have 3 ϕ ( 10 ) 7 ϕ ( 10 ) 1 3 ϕ ( 10 ) 1 (mod 10) 3^{\phi (10)} \equiv 7^{\phi (10)} \equiv 13^{\phi (10)} \equiv 1 \text{ (mod 10)} , where ϕ ( 10 ) = 4 \phi (10) = 4 is Euler totient function. Therefore,

3 2007 7 2008 1 3 2009 3 4 × 501 + 3 7 4 × 502 1 3 4 × 502 + 1 (mod 10) 27 × 1 × 13 (mod 10) 1 (mod 10) \begin{aligned} 3^{2007}7^{2008}13^{2009} & \equiv 3^{4\times 501+3}7^{4 \times 502}13^{4 \times 502 + 1} \text{ (mod 10)} \\ & \equiv 27 \times 1 \times 13 \text{ (mod 10)} \\ & \equiv \boxed{1} \text{ (mod 10)} \end{aligned}

good solution...+1

Ayush G Rai - 5 years, 1 month ago
Zyberg Nee
Oct 28, 2017

3 2007 × 7 2008 × 1 3 2009 3 2007 × ( 3 ) 2008 × 3 2009 3 2007 + 2008 + 2009 3 6024 9 3012 ( 1 ) 3012 1 m o d 10 3^{2007} \times 7^{2008} \times 13^{2009} \equiv 3^{2007} \times (-3)^{2008} \times 3^{2009} \equiv 3^{2007 + 2008 + 2009} \equiv 3^{6024} \equiv 9^{3012} \equiv (-1)^{3012} \equiv 1 \mod 10

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...