Real cubes

Algebra Level 5

The sum of 2016 real numbers is 0. If none of the numbers exceeds 1, then what is the maximum possible sum of their cubes?


The answer is 504.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Miles Koumouris
Apr 14, 2017

Observe that the inequality 4 x 3 + 3 x + 1 = ( 1 x ) ( 2 x + 1 ) 2 0 -4x^{3}+3x+1=(1-x)(2x+1)^{2}\geq 0 holds \forall x 1 x\leq 1 . Assigning the numbers as x k x_{k} for some 1 k 2016 1\leq k\leq 2016 , it is evident that

k = 1 2016 ( 4 x k 3 + 3 x k + 1 ) = 2016 4 k = 1 2016 x k 3 0 \displaystyle \sum_{k=1}^{2016}(-4x_{k}^3+3x_{k}+1)=2016-4\displaystyle \sum_{k=1}^{2016}x_{k}^3\geq 0

k = 1 2016 x k 3 504 \Longrightarrow \displaystyle \sum_{k=1}^{2016}x_{k}^3\leq 504 .

Such a sum is obtained if x k = 1 x_{k}=1 for 1 k 672 1\leq k\leq 672 , and x k = 1 2 x_{k}=\dfrac{-1}{2} for 673 k 2016 673\leq k\leq 2016 .

Hence, the answer is 504 \boxed{504} .

Kushal Bose
Apr 15, 2017

Let i = 0 2016 x i = 0 \displaystyle \sum_{i=0}^{2016} x_i =0 and each x i 1 x_i \leq 1 .So, there will some positive values and some negative values.

While adding the cubes of the terms then there will be still negative values and positive values.

Assume there are k k positive terms and 2016 k 2016-k negative terms.To maximize positive values we can assign k k terms will equal to 1 1 .So, total value k × 1 = k k \times 1=k .So, rest of the values will be negative and should be k -k .So, minimum x i x_i for k + 1 i 2016 k+1 \leq i \leq 2016 is ( 2016 k ) x i = k x i = k 2016 k (2016-k) x_i=-k \implies x_i=\dfrac{-k}{2016-k}

Now, i = 0 2016 x i 3 = i = 0 k x i 3 + i = k + 1 2016 x i 3 = k + ( 2016 k ) x i 3 = k k 3 ( 2016 k ) 2 \displaystyle \sum_{i=0}^{2016} x^3_i =\displaystyle \sum_{i=0}^{k} x^3_i + \displaystyle \sum_{i=k+1}^{2016} x^3_i \\ =k+(2016-k) x^3_i \\ =k- \dfrac{k^3}{(2016-k)^2}

Now, using simple calculus maximum value of k = 672 k=672

Using this maximum value of sum is 504 504

This is an incomplete solution, because it might be possible to achieve higher value by not setting all positive values as 1.

Ivan Koswara - 4 years, 1 month ago

Log in to reply

if you set values strictly less than 1 then it may be fractions or negative numbers.SO, their cubes will be strictly negative and total positive value will be reduced.

Kushal Bose - 4 years, 1 month ago

Log in to reply

But if you make some positive value less than 1, then the sum of the positive values becomes smaller. So the negative values also become smaller (in magnitude); this might potentially make the overall sum of cubes to be larger.

Ivan Koswara - 4 years, 1 month ago

The largest fraction that can cancel 1 is 1/2. Two of "-1/2" will cancel one "1" , and in three terms, when cubed, we get 1-2/8=3/4. \therefore the average per 2016 terms =(3/4)/3=1/4.
For 2016 terms, the sum = 2016 * 1/4=504.

I f w e t a k e a f r a c t i o n ( i ) g r e a t e r t h a n o r ( i i ) l e s s t h a n 1 2 , s a y 1 2 ± 1 n = n ± 2 2 n . I n o r d e r t o c a n c e l " 1 s " , t h i s f r a c t i o n n ± 2 2 n m u s t h a v e 2 n t e r m s . S o m a x i m u m " 1 s " m u s t b e ( n ± 2 ) t e r m s . S o i n ( 3 n ± 2 ) t e r m s , w e w i l l h a v e ( n ± 2 ) " 1 s " a n d 2 n o f " n ± 2 2 n " t e r m s . S u m o f 3 n ± 2 t e r m s = n ± 2 ( n ± 2 ) = 0. S u m o f t h e c u b e s f o r 3 n ± 2 t e r m s = n ± 2 2 n ( n ± 2 2 n ) 3 = ( n ± 2 ) ( 1 ( n ± 2 2 n ) 2 = ( n ± 2 ) ( 1 ( 1 2 ± 1 n ) 2 ) = ( n + 2 ) ( 3 / 4 1 n 2 1 n ) . a v e r a g e = n ± 2 3 n ± 2 ( 3 / 4 1 n 2 ± 1 n ) < 1 / 4 a v e r a g e f o r 1 / 2. S a y i f n = ± 4 , a v e r a g e f o r b o t h , ± i s 3 / 16 f r o m a b o v e f o r m u l a . If~ we~ take~ a ~fraction~~(i)~~greater~ than~ or~~(ii)~~ less~ than ~\dfrac 1 2,\\ say ~\dfrac 1 2~ \pm ~\dfrac 1 n=\dfrac {n \pm 2}{2n}.\\ ~ In~ order~ to ~cancel~~ "1s", ~~this~ fraction~\dfrac {n \pm 2}{2n} ~must~ have~ 2n ~terms.\\ So ~maximum ~~"1s"~~ must~ be ~(n ~\pm ~2) ~terms.\\ So~ in~( 3n~\pm ~2)~ terms,~ we ~will~ have ~(n\pm 2)~~ "1s"~~ and~ 2n~ of~~ "-\dfrac {n \pm 2}{2n}"~~ terms. \\ Sum~ of 3n\pm ~2~ terms ~=n\pm 2-(n\pm 2)=0.\\ Sum ~of~ the~ cubes~ for~ 3n\pm 2~ terms =n\pm 2- 2n * (\dfrac{n \pm 2}{2n})^3\\ =(n\pm 2)(1-(\dfrac{n\pm 2}{2n})^2=(n\pm 2)(1 -(\frac 1 2 \pm \frac 1 n )^2)=(n+2)(3/4 - \dfrac 1{n^2} \mp \frac 1 n ).\\ \therefore~ average~=\dfrac{n \pm 2}{3n\pm 2}*(3/4-\dfrac 1{n^2} \pm \frac 1 n)<1/4~ average ~ for~ 1/2. \\ Say~ if~ n~=~ \pm~ 4 ,~~average ~for~both,~\pm~is~ 3/16 ~from~above~formula.

I f w e t a k e a f r a c t i o n ( i ) g r e a t e r t h a n o r ( i i ) l e s s t h a n 1 2 , s a y 1 2 ± 1 n = n ± 2 2 n . I n o r d e r t o c a n c e l " 1 s " , t h i s f r a c t i o n n ± 2 2 n m u s t h a v e 2 n t e r m s . S o m a x i m u m " 1 s " m u s t b e ( n ± 2 ) t e r m s . S o i n ( 3 n ± 2 ) t e r m s , w e w i l l h a v e ( n ± 2 ) " 1 s " a n d 2 n o f " n ± 2 2 n " t e r m s . S u m o f 3 n ± 2 t e r m s = n ± 2 ( n ± 2 ) = 0. S u m o f t h e c u b e s f o r 3 n ± 2 t e r m s = n ± 2 2 n ( n ± 2 2 n ) 3 = ( n ± 2 ) ( 1 ( n ± 2 2 n ) 2 = ( n ± 2 ) ( 1 ( 1 2 ± 1 n ) 2 ) = ( n + 2 ) ( 3 / 4 1 n 2 1 n ) . a v e r a g e = n ± 2 3 n ± 2 ( 3 / 4 1 n 2 ± 1 n ) < 1 / 4 a v e r a g e f o r 1 / 2. S a y i f n = ± 4 , a v e r a g e f o r b o t h , ± i s 3 / 16 f r o m a b o v e f o r m u l a . If~ we~ take~ a ~fraction~~(i)~~greater~ than~ or~~(ii)~~ less~ than ~\dfrac 1 2,\\ say ~\dfrac 1 2~ \pm ~\dfrac 1 n=\dfrac {n \pm 2}{2n}.\\ ~ In~ order~ to ~cancel~~ "1s", ~~this~ fraction~\dfrac {n \pm 2}{2n} ~must~ have~ 2n ~terms.\\ So ~maximum ~~"1s"~~ must~ be ~(n ~\pm ~2) ~terms.\\ So~ in~( 3n~\pm ~2)~ terms,~ we ~will~ have ~(n\pm 2)~~ "1s"~~ and~ 2n~ of~~ "-\dfrac {n \pm 2}{2n}"~~ terms. \\ Sum~ of 3n\pm ~2~ terms ~=n\pm 2-(n\pm 2)=0.\\ Sum ~of~ the~ cubes~ for~ 3n\pm 2~ terms =n\pm 2- 2n * (\dfrac{n \pm 2}{2n})^3\\ =(n\pm 2)(1-(\dfrac{n\pm 2}{2n})^2=(n\pm 2)(1 -(\frac 1 2 \pm \frac 1 n )^2)=(n+2)(3/4 - \dfrac 1{n^2} \mp \frac 1 n ).\\ \therefore~ average~=\dfrac{n \pm 2}{3n\pm 2}*(3/4-\dfrac 1{n^2} \pm \frac 1 n)<1/4~ average ~ for~ 1/2. \\ Say~ if~ n~=~ \pm~ 4 ,~~average ~for~both,~\pm~is~ 3/16 ~from~above~formula.

Niranjan Khanderia - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...