An algebra problem by Naren Bhandari

Algebra Level 3

{ A × 4 = E B ÷ 4 = E C + 4 = E D 4 = E A + B + C + D = 100 \begin{cases} A × 4 = E \\ B ÷ 4 = E \\ C + 4 = E \\ D - 4 = E \\ A + B + C + D = 100 \end{cases}

If real numbers A A , B B , C C , D D and E E satisfy the system of equations above, find the product A B C D ABCD .


The answer is 61440.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

4 A = E 4A = E or A = E 4 A = \frac{E}{4}

B 4 = E \frac{B}{4} = E or B = 4 E B = 4E

C + 4 = E C + 4 = E or C = E 4 C = E - 4

D 4 = E D - 4 = E or D = E + 4 D = E + 4

Substitute A , B , C A,B,C and D D in the fifth equation.

A + B + C + D = 100 A + B + C + D = 100

E 4 + 4 E + E 4 + E + 4 = 100 \frac{E}{4} + 4E + E - 4 + E + 4 = 100

E = 16 E = 16

solving for A,B,C and D, we have

A = 16 4 = 4 A = \frac{16}{4} = 4

B = 4 ( 16 ) = 64 B = 4(16)=64

C = 16 4 = 12 C = 16 - 4 = 12

D = 16 + 4 = 20 D = 16 + 4 = 20

A B C D = ( 4 ) ( 64 ) ( 12 ) ( 20 ) = ABCD = (4)(64)(12)(20) = 61440 \boxed{61440}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...