A number theory problem by Rahil Sehgal

Find the remainder when 3 100 , 000 3^{100,000} is divided by 53.


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 22, 2017

Relevant wiki: Euler's Theorem

3 100000 3 100000 mod ϕ ( 53 ) (mod 53) Since gcd ( 3 , 53 ) = 1 , Euler’s theorem applies. 3 100000 mod 52 (mod 53) Euler’s totient function ϕ ( 53 ) = 52 3 10 ( 104 4 ) 2 mod 52 (mod 53) 3 160 mod 52 (mod 53) 3 4 (mod 53) 81 (mod 53) 28 (mod 53) \begin{aligned} 3^{100000} & \equiv 3^{\color{#3D99F6}100000 \text{ mod }\phi (53)} \text{ (mod 53)} & \small \color{#3D99F6} \text{Since } \gcd(3,53) = 1 \text{, Euler's theorem applies.} \\ & \equiv 3^{\color{#3D99F6}100000 \text{ mod }52} \text{ (mod 53)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(53) = 52 \\ & \equiv 3^{10(104-4)^2 \text{ mod }52} \text{ (mod 53)} \\ & \equiv 3^{160 \text{ mod }52} \text{ (mod 53)} \\ & \equiv 3^4 \text{ (mod 53)} \\ & \equiv 81 \text{ (mod 53)} \\ & \equiv \boxed{28} \text{ (mod 53)} \end{aligned}

Rahil Sehgal
Mar 21, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...