7 5 3 1 4 4 1 + 7 4 7 2 3 9 2 + 7 4 1 9 9 0 4 + 7 3 7 3 2 4 8 + 7 3 3 1 7 7 6 + 7 2 9 4 9 1 2 + 7 2 6 2 1 4 4 1
The expression above simplifies to d 7 a − 7 b + 7 c , where a , b , d are coprime positive integers with a > b .
Find a − b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
It is a nice question. Please write 373248 in place of 373243 and also insert a '+' sign in the expression. It is simple question knowing factors of (a^7 - b^7).
Problem Loading...
Note Loading...
Set Loading...
First, we should know the identity.
x 7 − y 7 = ( x − y ) ( x 6 + x 5 y + x 4 y 2 + x 3 y 3 + x 2 y 4 + x y 5 + y 6 )
Now,
7 5 3 1 4 4 1 + 7 4 7 2 3 9 2 + 7 4 1 9 9 0 4 + 7 3 7 3 2 4 8 + 7 3 3 1 7 7 6 + 7 2 9 4 9 1 2 + 7 2 6 2 1 4 4 1
= 7 9 6 + 7 9 5 × 8 + 7 9 4 × 8 2 + 7 9 3 × 8 3 + 7 9 2 × 8 4 + 7 9 × 8 5 + 7 9 6 1
= 7 9 6 + 7 9 5 × 8 + 7 9 4 × 8 2 + 7 9 3 × 8 3 + 7 9 2 × 8 4 + 7 9 × 8 5 + 7 9 6 1 × ( 7 9 − 7 8 ) ( 7 9 − 7 8 )
= ( 7 9 ) 7 − ( 7 8 ) 7 7 9 − 7 8
= 1 7 9 − 7 8 = d 7 a − 7 b + 7 c
Therefore,
a − b + c + d = 9 − 8 + 0 + 1 = 2