An algebra problem by Sakanksha Deo

Algebra Level 5

1 531441 7 + 472392 7 + 419904 7 + 373248 7 + 331776 7 + 294912 7 + 262144 7 \frac{1}{ \sqrt[7]{531441} + \sqrt[7]{472392} + \sqrt[7]{419904} + \sqrt[7]{373248} + \sqrt[7]{331776} + \sqrt[7]{294912} + \sqrt[7]{262144} }

The expression above simplifies to a 7 b 7 + c 7 d \dfrac{ \sqrt[7]{a} - \sqrt[7]{b} + \sqrt[7]{c} }{d} , where a , b , d a,b,d are coprime positive integers with a > b a>b .

Find a b + c + d a - b + c + d .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sakanksha Deo
Mar 28, 2015

First, we should know the identity.

x 7 y 7 = ( x y ) ( x 6 + x 5 y + x 4 y 2 + x 3 y 3 + x 2 y 4 + x y 5 + y 6 ) \large x^7 - y^7 = ( x - y ) ( x^6 + x^5 y + x^4 y^2 + x^3 y^3 + x^2 y^4 + x y^5 + y^6 )

Now,

1 531441 7 + 472392 7 + 419904 7 + 373248 7 + 331776 7 + 294912 7 + 262144 7 \large \frac{1}{ \sqrt[7]{531441} + \sqrt[7]{472392} + \sqrt[7]{419904} + \sqrt[7]{373248} + \sqrt[7]{331776} + \sqrt[7]{294912} + \sqrt[7]{262144} }

= 1 9 6 7 + 9 5 × 8 7 + 9 4 × 8 2 7 + 9 3 × 8 3 7 + 9 2 × 8 4 7 + 9 × 8 5 7 + 9 6 7 = \large \frac{ 1 }{ \sqrt[7]{9^6} + \sqrt[7]{ 9^5 \times 8 } + \sqrt[7]{9^4 \times 8^2 } + \sqrt[7]{ 9^3 \times 8^3 } + \sqrt[7]{ 9^2 \times 8^4 } + \sqrt[7]{ 9 \times 8^5 } + \sqrt[7]{ 9^6 } }

= 1 9 6 7 + 9 5 × 8 7 + 9 4 × 8 2 7 + 9 3 × 8 3 7 + 9 2 × 8 4 7 + 9 × 8 5 7 + 9 6 7 × ( 9 7 8 7 ) ( 9 7 8 7 ) = \large \frac{ 1 }{ \sqrt[7]{9^6} + \sqrt[7]{ 9^5 \times 8 } + \sqrt[7]{9^4 \times 8^2 } + \sqrt[7]{ 9^3 \times 8^3 } + \sqrt[7]{ 9^2 \times 8^4 } + \sqrt[7]{ 9 \times 8^5 } + \sqrt[7]{ 9^6 } } \times \frac{ ( \sqrt[7]{9} - \sqrt[7]{8} ) }{ ( \sqrt[7]{9} - \sqrt[7]{8} ) }

= 9 7 8 7 ( 9 7 ) 7 ( 8 7 ) 7 = \frac{ \sqrt[7]{9} - \sqrt[7]{8} }{ ( \sqrt[7]{9} )^7 - ( \sqrt[7]{8} )^7 }

= 9 7 8 7 1 = a 7 b 7 + c 7 d = \frac{ \sqrt[7]{9} - \sqrt[7]{8} }{1} = \frac{ \sqrt[7]{a} - \sqrt[7]{b} + \sqrt[7]{c} }{d}

Therefore,

a b + c + d = 9 8 + 0 + 1 = 2 \large a - b + c + d = 9 - 8 + 0 + 1 = \boxed{2}

Rajen Kapur
Mar 27, 2015

It is a nice question. Please write 373248 in place of 373243 and also insert a '+' sign in the expression. It is simple question knowing factors of (a^7 - b^7).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...