A number theory problem by Shanthanu Rai

Find the sum of all possible values of positive integer n n for which n 2 + 192 n^2+192 is a perfect square .

92 88 62 104

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let n 2 + 192 = ( n + m ) 2 where m is a positive integer. = n 2 + 2 m n + m 2 2 m n + m 2 = 192 We note that m 2 and hence m must be even. n = 192 m 2 2 m = 96 m m 2 \begin{aligned} \color{#3D99F6}{\text{Let}} \quad \quad n^2 + 192 & = (n+\color{#3D99F6}{m})^2 \quad \quad \quad \quad \color{#3D99F6}{\text{where } m \text{ is a positive integer.}} \\ & = n^2 + 2mn + m^2 \\ \Rightarrow 2mn + \color{#3D99F6}{m^2} & = 192 \quad \quad \quad \quad \quad \quad \space \space \color{#3D99F6}{\text{We note that } m^2 \text{ and hence } m \text{ must be even.}} \\ n & = \frac{192-m^2}{2m} \\ & = \frac{96}{m} - \frac{m}{2} \end{aligned}

The possible m and n are: \color{#3D99F6}{\text{The possible }m \text{ and } n \text{ are:}}

{ m = 2 n = 48 1 = 47 m = 4 n = 24 2 = 22 m = 6 n = 16 3 = 13 m = 8 n = 12 4 = 8 m = 12 n = 8 6 = 2 \begin{cases} m = 2 & \Rightarrow n = 48- 1 & = 47 \\ m = 4 & \Rightarrow n = 24 - 2 & = 22 \\ m = 6 & \Rightarrow n = 16 - 3 & = 13 \\ m = 8 & \Rightarrow n = 12 - 4 & = 8 \\ m = 12 & \Rightarrow n = 8 - 6 & = 2 \end{cases}

The sum of all possible n = 47 + 22 + 13 + 8 + 2 = 92 \color{#3D99F6}{\text{The sum of all possible } n} = 47+22+13+8+2 = \boxed{92}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...