A number theory problem by Snehashis Mukherjee

Find last three digits of 7 9999 7^{9999}


The answer is 143.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

1000 = 2 3 5 3 1000 = 2^{3} \cdot 5^{3}
ϕ ( 1000 ) = 400 \phi(1000) = 400 where ϕ \phi is the Euler Phi function.
7 400 1 ( m o d 1000 ) \therefore 7^{400} \equiv 1 \pmod{1000}
7 10000 1 ( m o d 1000 ) \therefore 7^{10000} \equiv 1 \pmod{1000}
7 7 9999 1 ( m o d 1000 ) \therefore 7 \cdot 7^{9999} \equiv 1 \pmod{1000}
Let 7 9999 = x 7^{9999} = x
7 x 1 ( m o d 1000 ) 7x \equiv 1 \pmod{1000}
Multiplying by 143 143
1001 x 143 ( m o d 1000 ) 1001x \equiv 143 \pmod{1000}
x 143 ( m o d 1000 ) \therefore x \equiv 143 \pmod{1000}
Thus, the last 3 digits are 143 143


Nice solution!

Pi Han Goh - 5 years, 1 month ago

yup!!!!!! done same as u

Snehashis Mukherjee - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...