An easy problem #2

If a+b+c=0 then the value of a 2 b c \frac {a^{2}}{bc} + b 2 a c \frac {b^{2}}{ac} + c 2 a b \frac {c^{2}}{ab} is


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vishal S
Jan 15, 2015

a 2 b c \frac {a^{2}}{bc} + b 2 a c \frac {b^{2}}{ac} + c 2 a b \frac {c^{2}}{ab}

\Rightarrow a 4 b c + b 4 a c + c 4 a b ( a b c ) 2 \frac {a^4bc+b^4ac+c^4ab}{(abc)^2}

\Rightarrow a b c ( a 3 + b 3 + c 3 ) ( a b c ) 2 \frac {abc(a^{3}+b^{3}+c^{3})}{(abc)^{2}}

Since a+b+c=0.Therefore a 3 a^{3} + b 3 b^{3} + c 3 c^{3} =3abc

\Rightarrow a b c ( a 3 + b 3 + c 3 ) ( a b c ) 2 \frac {abc(a^{3}+b^{3}+c^{3})}{(abc)^{2}} = a b c ( 3 a b c ) ( a b c ) 2 \frac {abc(3abc)}{(abc)^{2}}

Therefore a 2 b c \frac {a^{2}}{bc} + b 2 a c \frac {b^{2}}{ac} + c 2 a b \frac {c^{2}}{ab} when a+b+c=0 is 3 \boxed{3}

I get 0. a 2 b c + b 2 a c + c 2 a b = a 2 a c a b + b 2 b c a b + c 2 b c a c b c a c a b = a ( a c b ) + b ( b c a ) + c ( c b a ) b c a c a b = a b c ( a + b + c ) a 2 b 2 c 2 = a + b + c a b c S i n c e a + b + c = 0 a + b + c a b c = 0 a b c = 0 \frac { { a }^{ 2 } }{ bc } +\frac { { b }^{ 2 } }{ ac } +\frac { { c }^{ 2 } }{ ab } =\frac { { a }^{ 2 }acab+\begin{matrix} { b }^{ 2 }bcab+ & { c }^{ 2 } \end{matrix}bcac }{ bcacab } =\frac { a(acb)+b(bca)+c(cba) }{ bcacab } =\frac { abc(a+b+c) }{ \begin{matrix} { a }^{ 2 } & { b }^{ 2 } & { c }^{ 2 } \end{matrix} } =\frac { a+b+c }{ abc } \quad Since\quad a+b+c=0\Longrightarrow \frac { a+b+c }{ abc } =\frac { 0 }{ abc } =0

Thoma Zoto - 6 years, 3 months ago

Why does it equal 3abc?

Cédric Goemaere - 4 years, 7 months ago
Rama Devi
May 13, 2015

Fox To-ong
Feb 9, 2015

that 's 1, -1 and 1

That doesnt give 0!

Cédric Goemaere - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...