An algebra problem by Vladimir Smith

Algebra Level 5

a n = n + 1 n 1 ( a 1 + a 2 + a 3 + + a n 1 ) { a }_{ n }=\frac { n+1 }{ n-1 } ({ a }_{ 1 }+{ a }_{ 2 }+a_{ 3 } + \ldots +a_{ n-1 })

Consider the recurrence relation above for n 2 n\geq 2 and a 1 = 1 a_1 = 1 .

If a 2015 = b × 2 d a_{2015} = b \times 2 ^ d , where b b is an odd integer, then find b + 2 + d b + 2 + d .

Note : This problem can be solved without any calculator aids.


The answer is 2083.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rimson Junio
Sep 2, 2015

a n 1 = n n 2 ( a 1 + a 2 + a 3 + . . . + a n 2 ) a_{n-1}=\frac{n}{n-2}(a_1+a_2+a_3+...+a_{n-2}) From which it follows that: a 1 + a 2 + a 3 + . . . + a n 2 = n 2 n ( a n 1 ) a_1+a_2+a_3+...+a_{n-2}=\frac{n-2}{n}\cdot(a_{n-1}) a n = n + 1 n 1 ( a 1 + a 2 + a 3 + . . . + a n 2 + a n 1 ) a_n=\frac{n+1}{n-1}( a_1+a_2+a_3+...+a_{n-2}+a_{n-1}) a n = n + 1 n 1 [ n 2 n ( a n 1 ) + a n 1 ] a_n=\frac{n+1}{n-1}[\frac{n-2}{n}\cdot(a_{n-1})+a_{n-1}] a n = 2 ( n + 1 ) n a n 1 a_n=\frac{2(n+1)}{n}\cdot a_{n-1}

The previous equation gives a telescoping product for a n a_n such that a 2015 = 2 2014 2016 ! 2 2015 ! = 2016 2 2013 = 63 2 2018 a_{2015}=\frac{2^{2014}\cdot2016!}{2\cdot2015!}=2016\cdot2^{2013}=63\cdot2^{2018} Finally, b + c + d = 63 + 2 + 2018 = 2083 b+c+d=63+2+2018=2083 .

Equivalently a n = ( n + 1 ) 2 n 2 a_n=(n+1)\cdot 2^{n-2} .

Miles Koumouris - 2 years, 5 months ago

Let

S n = a 1 + a 2 + . . . + a n S_n=a_1+a_2+...+a_n

a n = S n S n 1 a_n=S_n-S_{n-1}

Then we can rewrite equation as:

S n S n 1 = n + 1 n 1 S n 1 S_n-S_{n-1}=\frac{n+1}{n-1} S_{n-1}

S n = 2 n n 1 S n 1 S_n=\frac{2n}{n-1} S_{n-1}

Now you can easily see that:

S n = 2 i n n i S n i S_n=\frac{2^i n}{n-i} S_{n-i}

Putting i = 1 i=1 and S 1 = 1 S_1=1 you can calculate:

S 2015 = 2 2014 2015 S_{2015}=2^{2014} 2015 and S 2014 = 2 2013 2014 S_{2014}=2^{2013} 2014

And you will get:

a n = 63 ˙ 2 2018 a_n=63 \dot{} 2^{2018}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...