A number theory problem by Wildan Bagus Wicaksono

Determine the value of

2017 3 2018 3 2017 4035 + 2018 2 \frac { { 2017 }^{ 3 }-{ 2018 }^{ 3 } }{ { 2017 }\cdot 4035+{ 2018 }^{ 2 } }


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Jul 6, 2017

Let n = 2017 n = 2017 .

N = n 3 ( n + 1 ) 3 n ( 2 n + 1 ) + ( n + 1 ) 2 a 3 b 3 = ( a b ) ( a 2 + a b + b 2 ) = [ n ( n + 1 ) ] [ n 2 + n ( n + 1 ) + ( n + 1 ) 2 ] n ( 2 n + 1 ) + ( n + 1 ) 2 = ( 1 ) n ( 2 n + 1 ) + ( n + 1 ) 2 n ( 2 n + 1 ) + ( n + 1 ) 2 = 1 \displaystyle \begin{aligned} N & = \frac{{\color{#3D99F6}{n^3 - (n + 1)^3}}}{n(2n + 1) + (n + 1)^2} & \small \color{#3D99F6} a^3 - b^3 = (a - b)(a^2 + ab + b^2) \\ & = \frac{{\color{#3D99F6}{\bigg[n - (n + 1)\bigg]\bigg[n^2 + n(n + 1) + (n + 1)^2\bigg]}}}{n(2n + 1) + (n + 1)^2} \\ & = (- 1)\frac{n(2n + 1) + (n + 1)^2}{n(2n + 1) + (n + 1)^2} \\ & = \boxed{- 1} \end{aligned}

= 2017 3 2018 3 2017 4035 + 2018 2 = 2017 3 2018 3 2017 ( 2017 + 2018 ) + 2018 2 = 2017 3 2018 3 2017 2 + 2017 2018 + 2018 2 = ( 2017 2 + 2017 2018 + 2018 2 ) ( 2017 2018 ) 2017 2 + 2017 2018 + 2018 2 = 1 =\frac { { 2017 }^{ 3 }{ -2018 }^{ 3 } }{ { 2017 }\cdot 4035+{ 2018 }^{ 2 } } \\ =\frac { { 2017 }^{ 3 }-{ 2018 }^{ 3 } }{ 2017(2017+2018)+{ 2018 }^{ 2 } } \\ =\frac { { 2017 }^{ 3 }-{ 2018 }^{ 3 } }{ { 2017 }^{ 2 }+2017\cdot 2018+{ 2018 }^{ 2 } } \\ =\frac { ({ 2017 }^{ 2 }+2017\cdot 2018+{ 2018 }^{ 2 })(2017-2018) }{ { 2017 }^{ 2 }+2017\cdot 2018+{ 2018 }^{ 2 } } \\ =-1

Oh, sorry. thanks for the correction

Wildan Bagus Wicaksono - 3 years, 11 months ago

Question posted is wrong. There should be minus sign in numerator but there is plus sign. Pls change the question

Rohit Sharma - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...